家用声频功率放大器保护电路的工作原理及检修

引言
    目前大功率家用声频功率放大器主声道均采用OCI.电路进行功率放大。由于这部份电路工作在高电压、大电流、高温度环境中,因此故障率是非常高的。而这种电路出现故障时.其输出的直流电位常常会偏离零电平而出现较高的正的或负的直流电压。输出的直流电流流过扬声器音圈时.可能会将音圈烧毁。另外.在部份特大功率的功放中,由于输出功率非常强劲,在用户操作不当或卡啦OK音量太大时,该声道的输出功率会远大于它的额定功率,可能会损坏功率放大器。甚至会损坏贵重的扬声器。因此.各种功放机都会设置保护电路。保护功放和音箱免遭损坏,下面介绍市场上常见的保护电路以及它们的修理方法。

1 信号分流式保护电路

图1是CAV-970型功放机电图,这是一个全对称。双差分、双恒流源OCI。功放电路,本文只对其保护电路作一些介绍。
    CAV-970的保护电路舍弃了传统的继电器而采用晶体管进行保护。功能有:短路保护、过载保护、开机延时保护。笔者曾对此机作过破坏性试验:加大输入信号幅度、加重负载(例如2 n负载)甚至短路都无法使该机功放后级损坏。可见该机设计者确有过人之处。    l.1 分流式过载保护电路
    此处正是该机精华所在。由Q451、R3、C1、D2、Q450、R2、Dl、C2等元件组成,正常工作时,由于取样电阻R4A1、R4A2阻值很小(O.22Ω),输出电流在其上的压降较小,Q450、Q451不导通,对信号没有分流作用。如果由于输入信号增大或负载阻抗减少,输出电流增大,导致取样电阻R4A1、R4A2上的压降增大,Q450、Q45l就会导通。Q450经二极管D1接于复合管输入端Q465基极,部份信号经二极管Dl、三极管Q450傍路分流,使输入到后级的信号幅度减少。使输出维持一定的水平。同理,Q451导通时,Q467上的信号也会被分流,使输出稳定。这时无论加大输入信号幅度或减少负载,都不能使输出电流增大,总被限定在某个水平之上。    1.2 短路保护电路
    该电路由Q1、Q2、QlO及其外围电路组成。当负载短路时,输出电流突然增大、流经R4A1时,Q461发射极电位上升,Q10基极电压上升,Q10导通.导致Q1、Q2导通。输入信号被子傍路到地。切断了信号源,保护了功率放大器和音箱不致损坏。    1.3 开机延时电路
    开机延时电路由C3、C4、D6、R7、R12等组成。刚接通电源,C3、C4上电压为O,D6导通,Ql、Q2导通,把输入信号傍路接地,喇叭中没有声音。此外,电流经R7、R12、D6慢慢对C3、C4充电,其上的电压慢慢上升,到达一定程度时D6截止,随后Q1、Q2截止。信号不会被傍路到地。功放进入正常工作状态。    1.4 故障维修
    1.4.1 未达额定功率,失真度就很大
    这是本机特有的故障。也是分流式保护电路的一个弱点。主要由Q450、Q451不配对引起。当输出达到某一幅度后,Q450、Q45l不是同时导通。而是一个导通另一个还未导通,或两管导通程度不一致。正负半周被分流的程度不同,造成失真。修理方法是更换两个经严格配对的晶体管(Q451、Q450)。
     1.4.2 无声
    该电路很容易造成无声故障。C3、C4漏电,Q10不良,都会导致Ql、Q2处于导通状态。使信号被短路到地而造成无声。
     1.4.3 开机延时时间太长
    这个故障其实与“无声”故障检查方法基本相同。根源也是C3、C4漏电。如果C3、C4漏电严重,经R7的充电电流被漏掉,C3、C4的电压升不起来,就会造成“无声”故障,如果漏电不很严重。经R7的充电电流被漏一部份.但C3、C4上的电压经较长时间后能上升,就会造成开机时间太长。此外,R7阻值变大也会造成这个故障。

2 负载切断式保护电路
    2.1 奇声Av-2750功放保护电路
    图2是奇声AV-2750功放保护电路,该电路结合单片机控制技术,对传统的保护电路进行改进,使电路具有响应速度快,稳定性高,电路简单,容易恢复等优点。主要功能有:直流检出电路,过载检出电路,开机延时电路。电路中Q340、R394、R395、R327、R328、C392组成了过流保护电路。R327、R328的阻值仅为O.25 Ω/5w,非常小,功率放大器正常工作时,对电路的影响也极小。但在出现音量过大使功率放大器长时间处在最大功率输出状态或音箱连接线碰头短路等过载情况时,功率输出管的发射极电流明显增大,电流流过.R327或R328,在其两端产生的电压便升高,经R394、R4.395分压后,只要R395两端的电压大于0.7 V,持续的时间足够使电容C392充满电荷(即延时保护,改变该电容的容量,可改变过载保护的响应速度),Q340便导通,其集电极电位下降,Q342基极电位也被拉低,Q342导通,并输出高电平信号,经.R301、R302输送到微处理器(CPU)的PRO端口。微处理器一检测到表示保护的高电平,立即从MUTEl(静音控制端口1)输出高平的控制电压,控制相关的静音控制电路。其中一路经R303,控制Q345导通,Q343与Q344组成的复合管的基极电位被拉低,复合管截止,继电器RL301失去电流释放,断开功率输出与音箱的连接,从而保护了音箱和功率管。

直流检测电路主要由Q339、Q336、R359、R362及周边元件组成。R355、R356与C317、C318组成低通滤波器。R355、R356是左(L)、右(R)声道的直流取样电阻,兼做直流检测电路的输入限流电阻。C317、C318串接成无极性电容器,用于旁路音频信号。功放正常工作时,左右声道输出的交变信号经R355、R356后,被C317、C318串接成无极性电容耦合到地,直流检测器输入端的电位几乎为O V。

当Q314击穿或其它原因面使功率放大器输出“正”的直流电压时,Q339导通,直流检测器输出低电位;同样,当Q315击穿或其它故障而使功率放大器输出“负”的直流电压时,Q336导通,直流检测器也输出低电位,经Q342倒相高电平,“通知”微处理器采取保护措施。在这里,微处理器相当于传统保护电路中的触发器;ZD301是为保护微处理器PRO口而设置的,避免Q342输出的电压过高而损坏微处理器的PRO口;C303是延迟电容,用来避免电路因供电变化、电路杂波引起的误保护,它与R301共同决定了保护延迟的时间。
    R363、C304、R304组成开机延时接通电路。由于C304两端的电压不能突变,开机时,Q343基极电位为O V,Q343、Q344组成的复合管不工作,继电器不吸合,音箱与功放电路暂时脱离。开机时功放产生的浪涌电流不会冲击音箱中的扬声器。但由于电阻R363的存在,+13 V电源将经R363向C304充电,其充电时间,由R363、C304的值决定.一般有3到4秒的延时时间。随着C343基极电位升到1.3 V,Q343、Q344组成的复合管导通,继电器吸合,音箱与功放电路接通。RL301是继电器;D302可吸收继电器动作时产生的反向电动势.起保护Q343、344的作用。C316是储能电容。由于供电电路到达继电器有一定的距离,使电源内阻增大,C316设计在继电器附近.能在继电器吸合瞬间,提供启动电流。    常见故障的修理:
    (1)继电器不吸合
    Q343基极是一个关键测试点,正常电压应为1.4 V左右,若此点电压正常而继电器不吸合,则检查Q343、Q344、R36l、及继电器本身是否正常。一般用万用表检查继电器两端的电压,很容易发现问题。
    若Q343基极电压偏低,继电器当然不会吸合。一般检查Q345、R363、R304会发现问题所在。修理实践证明:C304漏电引起继电器不吸合的现象屡见不鲜,所以维修时应引起足够的重视。
    左右两声道输出端的电压(中点电压)是另一个关键测试点。若有大于O.6 V的直流输出。会引起保护电路正常动作。这时应先修理功率放大部份。使直流电位恢复正常。
    若放大器中点电压正常,则要检测Q342基极电压,正常应在13 V以上。若该点电压在13 V以下,说明Q339或Q336击穿或穿流太大,导致PR0端输出高电平。CPU发出静音指令,使继电器释放。
    (2)保护电路过于灵敏
    功率远未达额定值而继电器就释放。造成这个故障的原因是元件变值,造成保护电路误动作。常见原因有R395阻值变大,C392开路。另外C317或C318容量变小(旧机器常见的现象)造成滤波不良,正半周Q339导通.负半周Q336际通,也会使电路产生误动作。
    (3)过载保护失灵
    过载检出电路任何元件损坏,都可能会造成上述故障,但修理实践证明:R358阻值变大引发的上述故障,几率最高。该电阻值变大后,过载信号不足以使Q34:2导通.起不到保护作用,烧坏喇叭的现象时有发生。
    (4)开机延时时间太长
    这种故障多由C304漏电引起,另外R363阻值变大也会发生上述故障。(一般的延时时间是2~4秒,由.R363、C304的时间常数决定)。
    (5)开机出现噪声(开机延时时间太短)
    刚开机时功放的中点电压尚未建立,一般要1~2秒后才达稳定状态。所以要求功放机延时2~4秒才接通扬声器。过早接入扬声器便会出现开机噪声,常见原因是C304容量变小,使Q343基极电压上升太快,继电器过早吸合。    2.2 奇声AV-388D后级功放电路
    图3是奇声AV-388D后级功放的保护触发、驱动电路。直流检出电路由D4~D7组成的桥式整流电路,再由Q15、Q14加以放大,推动施密特触发器工作。无论左右声道出现正的或负的电压都可能使Qi5、Q14导通驱动后级释放继电器,使功放和音箱得到保护。

图中。保护驱动电路是一个以Q13、Q12为核心的施密特触发器。选择合适的R28、R27、R26的电阻值,保证Qi2基极起始状态为高电平,Q12饱和导通。此时,Q12的射极电流流过R26时,在R26两端形成电压,使Q13发射极(即触发器的入端)无高控制电压时.Qi3处于截止状态,实现第一稳态.继电器处于吸合状态,功放进行正常的输出。当检测电路或开机延时电路输出的高电平(此电平必须高于触发器的触发门电平)加到Ot3的基极时,Q13由截止翻转到导通状态,同时出现正反馈过程:UQl3b↑→IQl3b↑→IQl3c↑→UQl3c↓→LIQl2b↓→IQl2e↓→IR26↓→UR26↓→IQl3b↑。Q13迅速地饱和导通,其集电极电压几乎O,使Q12由饱和导通变为截止,触发器的输出翻转为第三稳态,继电器释放,进入保护状态。当触发器输入端的保护电压下降(如:开机延时保护结束或过载状态解除),达到关门电平时,Q13退出饱和,并引发另一次与第一稳态过程相反的正反馈。Q12由截止再次变为饱和导通,电路又返回到第一稳态,继电器吸合,保护取消。

电路中R43为限流电阻,D3为继电器反电动势释放二极管,以防反电动势损坏Q12。另外.由于继电器需要的吸合启动电流较大,该电路在电阻R43两端电路并联了电容C22。继电器吸合启动前,电容被R43放电;Q12饱和导通瞬间,由于C22两端电压不能突变,启动电流绕过R43的阻碍,经C22直通,使继电器迅速吸合。吸合后,C22也被充满电,继电器的维持电流经R43衰减提供。C8为延时电容,R3l是C8的限流电阻。它们与R32、R30、Q13、R26组成延时电路,调整C8、R31值。可以改变延时时间。开机时,电源电压通过C8、R3l提供给Q13、Q12组成的触发器控制端。触发器处在Q12截止状态,继电器不吸合,功率输出电路暂时断开,直到C8被充到一定电荷为止。    故障检修:
    当继电器不吸合,先检查输出端的中点电压,若有直流输出,则先检修功放部份。若无直流输出,继电器仍不吸合,则故障在保护电路本身。着重检查C8是否漏电,此电容漏电可能引起开机延时时间太长,或继电器不吸合。其余故障的检修方法可参考AV-2750。

(0)

相关推荐

  • 专业功放大功率管测试仪的制作

    由于本文笔者曾经在KTV舞厅兼职从事音响维护工作,非常了解KTV舞厅的音响需要大功率.高音量连续使用,所以功放的损坏率比较高.专业功放最容易损坏的部位莫过于功率对管击穿损坏,如用常规的检修方法,把损坏 ...

  • 乙类推挽和OTL功率放大器介绍

    乙类推挽功率放大器 电路图 特点 1.它由两只型号相同的三极管来组成 2.在静态时,因两管基极未加静态工作电压,故处于截止状态,因而电路没有静态损耗. 3.三极管发射结的门坎电压为0.5V,所以对于V ...

  • KONE-AV336E型功放机扬声器保护继电器频繁动作故障的维修

    一台KONE-AV336E型功放机,机主诉说通电后左右声道无声,在此之前音量一个声道大.一个声道小,大音量的也只有正常时音A的三分之一,再大就会出现频繁声音中断现象,只要把音量减小就可长期正常放音. ...

  • 家用声频功率放大器保护电路及其检修

    目前大功率家用声频功率放大器主声道均采用OCI.电路进行功率放大.由于这部份电路工作在高电压.大电流.高温度环境中,因此故障率是非常高的.而这种电路出现故障时.其输出的直流电位常常会偏离零电平而出现较 ...

  • 锂电池保护电路的工作原理介绍

    锂电池的应用非常广泛,种类也比较多,今天给大家分享一篇 记得诚 整理的文章:锂电池保护电路的工作原理. 前言 举一个不恰当的例子,电池的充放电就像孩子喝母乳一样.   1,如果一直让孩子喝,家长不加以 ...

  • 深入剖析锂电池保护电路的工作原理

    举一个不恰当的例子,电池的充放电就像孩子喝母乳一样. 1,如果一直让孩子喝,家长不加以控制,那么这个奶可能会被喝光,类似电池过放: 2,如果家长一直不给孩子喝奶,这个奶就会积攒越来越多,类似电池过充: ...

  • 家用声频功率放大器常见的保护电路及修理方法

    目前大功率家用声频功率放大器主声道均采用OCI.电路进行功率放大.由于这部份电路工作在高电压.大电流.高温度环境中,因此故障率是非常高的.而这种电路出现故障时.其输出的直流电位常常会偏离零电平而出现较 ...

  • 开关电源学习,启动电路的工作原理〔五〕

    开关电源学习,启动电路的工作原理〔五〕

  • 家用配电箱的主要作用和工作原理

    家用配电箱通常也叫做照明箱或强电箱,他属于家庭用电的末端保护装置,进线端连接到电度表的出线侧,出线端连接我们的家用电气.它是保护我们用电安全的最后一道保障.常用型号为PZ-30型照明箱. PZ-30系 ...

  • 开关电源:BUCK转换电路的工作原理

    描述 开关电源(Switching  Mode  Power  Supply)即开关稳压电源,是相对于线性稳压电源的一种的新型稳压电源电路,它通过对输出电压实时监测并动态控制开关管导通与断开的时间比值 ...

  • BUCK电路的工作原理介绍

    描述 BUCK电路:输出电压低于输入电压,即降压.另外还有BOOST和BUCK-BOOST电路,这里暂不做分析.降压电路的基本拓扑结构如下:(Vout<Vin) 其中,开关相当于一个PWM调制器 ...

  • 分享几种锂电池均衡电路的工作原理

    新能源的发展,电动汽车发展,都会用到能量密度比更高的锂电池,而锂电池串联使用过程中,为了保证电池电压的一致性,必然会用到电压均衡电路.在这几年的工作过程中,用到过几种电池的均衡电路,在这里就跟大家一起 ...