ML之多分类预测:以某个数据集为例从0到1深入理解科学预测之多分类问题的思路框架
ML之多分类预测:以某个数据集为例从0到1深入理解科学预测之多分类问题的思路框架
一、总体思路框架
二、各个步骤详细说明
相关推荐
-
【AI初识境】给深度学习新手做项目的10个建议
这是专栏<AI初识境>的第12篇文章.所谓初识,就是对相关技术有基本了解,掌握了基本的使用方法. 在成为合格的深度学习算法工程师,尤其是工业界能够实战的调参选手之前,总会踏足很多的坑. 今 ...
-
机器学习的应用
机器学习的应用
-
数学学习中的逻辑推理
逻辑推理是从一些事实和命题出发,依据逻辑规则推出一个命题的思维过程.我们在数学学习的过程中,也需要逻辑推理的参与.以下我分别从课堂听课.课后作业.阶段小结这三个时段具体说明如何进行逻辑推理. 首先,我 ...
-
ML之回归预测:以某个数据集为例从0到1深入理解科学预测之回归(实数值年龄预测)问题的思路框架
ML之回归预测:以某个数据集为例从0到1深入理解科学预测之回归(实数值年龄预测)问题的思路框架 1.总体思路架构图 2.各个步骤详细图
-
ML之二分类预测:以岩石水雷数据集(RockMine)为例从0到1深入理解科学预测之分类问题的思路框架(特征工程详细步骤(特征分析与特征处理)+分类模型设计)
ML之二分类预测:以岩石水雷数据集(RockMine)为例从0到1深入理解科学预测之分类问题的思路框架(特征工程详细步骤+分类模型设计) 一.总体思路框架 二.特征工程详细步骤(特征分析与特征处理) ...
-
ML之RF:kaggle比赛之利用泰坦尼克号数据集建立RF模型对每个人进行获救是否预测
ML之RF:kaggle比赛之利用泰坦尼克号数据集建立RF模型对每个人进行获救是否预测 输出结果 后期更新-- 实现代码 #预测模型选择的RF import numpy as np import pa ...
-
ML之LoR&SGD:基于LoR(逻辑回归)、SGD梯度下降算法对乳腺癌肿瘤(10+1)进行二分类预测(良/恶性)
ML之LoR&SGD:基于LoR(逻辑回归).SGD梯度下降算法对乳腺癌肿瘤(10+1)进行二分类预测(良/恶性) 输出结果 breast-cancer size (683, 11) 训练集情 ...
-
Keras之ML~P:基于Keras中建立的回归预测的神经网络模型(根据200个数据样本预测新的5+1个样本)——回归预测
Keras之ML~P:基于Keras中建立的回归预测的神经网络模型(根据200个数据样本预测新的5+1个样本)--回归预测 输出结果 核心代码 # -*- coding: utf-8 -*- #Ker ...
-
Competition——ML/DL:机器学习、深度学习各种计算机视觉、自然语言处理、科学预测等等比赛竞赛简介
Competition--ML/DL:机器学习.深度学习各种计算机视觉.自然语言处理.科学预测等等比赛竞赛简介 相关内容 Competition--互联网比赛(编程相关):国内外各种互联网比赛举办时间 ...
-
TF之AE:AE实现TF自带数据集数字真实值对比AE先encoder后decoder预测数字的精确对比
TF之AE:AE实现TF自带数据集数字真实值对比AE先encoder后decoder预测数字的精确对比 输出结果 代码设计 import tensorflow as tf import numpy a ...
-
EL之Bagging:kaggle比赛之利用泰坦尼克号数据集建立Bagging模型对每个人进行获救是否预测
EL之Bagging:kaggle比赛之利用泰坦尼克号数据集建立Bagging模型对每个人进行获救是否预测 输出结果 设计思路 核心代码 bagging_clf = BaggingRegressor( ...
-
ML之NB:利用NB朴素贝叶斯算法(CountVectorizer/TfidfVectorizer+去除停用词)进行分类预测、评估
ML之NB:利用NB朴素贝叶斯算法(CountVectorizer/TfidfVectorizer+去除停用词)进行分类预测.评估 输出结果 设计思路 核心代码 class CountVectoriz ...