【措施】 抑制汽轮机甩负荷时动态超速的措施

一、抑制汽轮机甩负荷时的动态超速的措施

由于汽轮机对象特性(转子时间常数过小,蒸汽容积时间常数过大),极易在发电机甩负荷时造成转子过大的动态超速,除了提高进汽阀门关闭速度外,还必须在阀门配置以及控制系统设计中采取必要的措施,抑制其过大的超速,造成对机组的伤害。常用的措施有以下5条:

1、对中间再热机组,在中压缸前设置再热主汽门与再热调节阀。

2、用转速的加速度信号超前关闭调节阀。

3、用汽轮机负荷和发电机功率不平衡作为前馈信号,超前关闭调节阀。

4、采用OPC超速保护控制功能。

5.用汽轮机和发电机负荷不平衡信号快速降低负荷设定值。

二、 中间再热机组中压缸前设置再热主汽门与再热调节阀

对中间再热机组,在中压缸前和高压缸一样设置主汽门与调节阀。在停机时,控制高中压缸前的主汽门同时关闭;在甩负荷时高中压缸前的调节阀同时接受控制系统信号快速关闭,将中间再热器及其管道内积聚的蒸汽阻隔在汽轮机通流部分之外,防止这些蒸汽无阻拦地进入中低压缸膨胀作功,引起汽轮机的额外超速。

在正常运行时,中压调节阀与高压调节阀一样,同时受控于控制系统。为避免中压调节阀处于非全开时带来不必要的节流损失。常用的方法是将高中压调节阀按一定比例开启,在高压调节阀开度大于相当于30%负荷,二级旁路关闭时,中压调节阀处于全开状态,只有在高压调节阀开度小于30%负荷时,中压调节阀才随高压调节阀同时关小。图1是典型的高中压调节阀开度控制的关系曲线:

图1  高中压调节阀开度控制的关系曲线

三、利用转速的加速度信号超前关闭调节阀:

在以转速作为唯一控制信号的调节系统中,甩负荷时,调节汽阀关闭信号源自于汽轮机转速的升高。要想关闭进汽调节阀,必须要使转速升高才能达到目的。因此,用转速的升高来抑制过大的超速显然得不到理想的效果。

由于汽轮机的角加速度和不平衡力矩成正比,在甩负荷开始的瞬间,不平衡力矩最大,相应汽机转子的加速度也最大。如果采用转子的加速度信号,来关闭调节汽阀,则在甩负荷的瞬间就能获得关闭调节汽阀的最大信号。这一超前于转速升高的加速度控制将能获得有效抑制动态超速的效果。

在液压控制系统中通常设置有一个加速器或微分器,当代表汽机转速的油压信号变化速度超过一定量时,加大控制油口的泄油量,使油动机的控制油压快速卸压,加快调节汽阀关闭速度。

图2是带高速弹性调速器的液压调节系统中常用的微分器。其动作原理是:当汽轮机转速增加时,分配滑阀的排油量也增加,主滑阀1下移,打开油口a,随动滑阀2将由于油腔A油压降低,跟随主滑阀下移,重新关闭油口a。如转速增加很快,随动滑阀来不及跟随主滑阀下移,油口g超过重迭度Δ而打开,造成从动滑阀3因其上部腔室B的油压下降而上移,控制油口h开启,使油动机控制油压获得这一超前的附加信号而卸压,加快关闭调节阀。图2  微分器

在模拟电子控制系统中,把比例调节器改为(比例+微分)调节器,也能获得转速微分的单向输出,超前关闭调节阀。但微分的加入有时会影响系统的稳定性。

在数字控制系统中,由于采样及运算有时间延时,得不到正确的加速度计算值,抑制汽轮机动态的超速一般不采用这种方式,大都采用功率不平衡的前馈信号,以开关控制方式,实现超速控制。

四、利用汽轮机负荷和发电机功率不平衡作为前馈信号,超前关闭调节阀:

既然转子加速度是由汽轮机和发电机功率不平衡引起的,那么是否可以用不平衡信号直接去超前控制调节阀的关闭呢?。

在液压控制系统中采用的“电超速保护装置”,就是一种有效抑制汽轮机动态超速的设备。在实际使用中获得了理想的效果。

这种装置的功率不平衡信号,主要取自于代表汽轮机负荷的调节级压力(对纯凝汽式汽轮机)或中压调节汽阀后压力(对中间再热汽轮机)和代表发电机有功功率的发电机输出电流。汽轮发电机组处于平衡状态运行时汽轮机负荷和发电机有功功率是相等的,只有在电力系统发生故障时,发电机功率瞬间变小,控制系统还来不及改变汽轮机出力时,才会造成汽轮机负荷和发电机功率极大的不平衡。

图3是曾经在液压控制系统中使用过的“电超速保护装置”控制原理简图:

1975年在国产125MW再热机组的甩全负荷考核试验中使用该“电超速保护装置”,达到理想的效果。在系统设置的不等率δ=5%,实测转子时间常数Ta=8s;中间再热容积时间常数Tρ2 =8s;高中压油动机时间常数TS=0.4s的情况下,最终实测的最大飞升转速为3270转/分,控制在合格范围内。

图3  电超速保护装置

以中压调节汽阀后压力作为汽轮机输出功率,用压力开关检测该点的压力,在达到≥60%额定负荷的相应压力时,压力开关带动的中间继电器1ZJ接点闭合;在发电机输出电流≤25%额定电流时,调整检测该电流的电流继电器,使其中间继电器2ZJ接点闭合。将1ZJ接点和2ZJ接点串联连接,去控制电超速保护装置的电磁阀ZM。只有在二个接点都处于闭合状态,表明汽轮机负荷(≥60%)与发电机功率(≤25%)出现不平衡时,电磁阀ZM才通电,卸去控制高中压油动机快速关闭的控制油压,高中压进汽调节阀快速关闭。在确认发电机主开关已跳闸后,中间继电器3ZJ闭合,经延时继电器1SJ一段时间的延时(2.5~4s)并在转速返回到相应3150转/分时,切断电磁阀通电,使控制系统恢复对调节汽阀的控制。

五、采用OPC超速保护控制功能:

OPC超速保护控制是数字电液控制系统的功能之一,由负荷预测(LDA)、103%超速保护(103%OPC)及中压调节阀快关(CIV)三部分组成。其中CIV功能因涉及到电力系统负荷不平衡的问题,原则上不属于抑制汽轮机动态超速的措施。

图4  OPC超速保护控制的原理图

在汽轮机大于30%额定负荷时,如发电机主开关跳闸,将启用负荷预测(LDA)功能,使OPC电磁阀激磁动作,快速关闭高中压调节阀。这一汽轮发电机组负荷不平衡信号,超前于转速飞升,将有效抑制汽轮机动态超速。在延时3~7.5秒且在转速小于额定转速的103%时,高中压调节阀再恢复由控制系统再度控制汽机转速。如果此时转速再次飞升到103%,则103%超速保护功能将被启用,使OPC电磁阀再次激磁动作,快关高中压调节阀,如此反复,直至汽轮机转速被控制在103%以下。OPC电磁阀动作的次数决定于汽机通流部分中残留蒸汽的作功能力。对不带二级旁路的系统或二级旁路系统此时仍未投用,在数字电液控制系统中,有时设置中压调节汽阀在负荷预测功能结束后,再次开启到全开状态,意在尽快将锅炉再热器内的余汽通过中低压缸排入凝汽器,这样的设置会使OPC动作的次数增加。对二级旁路系统已经投用,则设置中压调节汽阀再次开启在由控制系统控制的状态,让再热器内的余汽消耗在维持汽轮机空转上,OPC动作的次数将会明显减少,这样的设置有利于系统的稳定和EH供油系统的负担的减轻。

六、利用汽轮机和发电机功率不平衡信号快速减小负荷设定值:

由汽轮机调节原理可知,并网运行的汽轮机,带一定负荷,其调节汽阀的开度决定于负荷设定值的大小。额定负荷运行的机组,一旦发电机主开关跳闸,甩全负荷时,汽轮机调节汽阀的关闭信号是通过转速升高获得的,也就是说转速升高了一个δ数值抵消了负荷设定值,才使调节汽阀关闭到空负荷位置。如果在发电机主开关跳闸的同时,将负荷设定值快速降到零,则无须转速升高一个δ,就能使调节阀快速关闭。因此在汽轮机负荷和发电机功率发生不平衡时,迅速将负荷设定值降到零,也不乏是一种抑制汽轮机动态超速有效方法。

图5是甩负荷时,负荷设定值降和不降的动态过程比较,曲线1:不降负荷设定值,曲线2:降低负荷设定值。

图5  负荷设定值降和不降的对动态过程的影响

从静态特性线图上看也可以证明: a是汽机原来的工作点,处在设定值为额定负的静态特性线1 上,此时转速为3000转/分。甩全负荷后,负荷为零,工作点将转移到静态特性线1的b,最终的静态转速将上升一个δ。如果在甩负荷同时将负荷设定值降到0,静态特性线平移到2 ,汽机的工作点将转移到c,最终的静态转速仍为3000转/分,转速不需要升高就能到达工作点c。见图6

   图6  从静态特性线图上看负荷设定值的影响

对电液控制系统中,这一措施已在控制策略中体现:在发电机主开关跳闸的同时,负荷控制回路自动切换到无负荷设定值的转速控制回路,无形中已把负荷设定值置于零位。

来源:上汽自控中心

(0)

相关推荐

  • 滑参数停机过程解析,学习一下

    660MW超超临界机组滑参数停机控制策略 滑参数停机:原煤仓拉仓经验总结(直流炉.前后墙对冲) [经验反馈]集控四值2号机组滑参数停机总结 机组冷态启动详细过程,学习一下 一.滑停的意义  停机方式: ...

  • 汽轮机主再热蒸汽及旁路系统详解学习

    主.再热蒸汽系统 主蒸汽系统 主蒸汽系统是指从锅炉过热器联箱出口至汽轮机主汽阀进口的主蒸汽管道.阀门.疏水管等设备.部件组成的工作系统. 本机组的主蒸汽系统采用双管一单管-双管布置.主蒸汽由锅炉过热器 ...

  • 机械超速试验时,为什么主、再热蒸汽压力尽量取低值?

    关于超速: 汽机超速的主要原因及处理原则? 超速试验为什么需要带25%额定负荷,运行3~4h后立即进行 高排通风阀什么作用?能不能防超速? 汽轮机超速试验学习 二十五项反措学习-防止汽轮机超速事故学习 ...

  • 本次机组长竞聘笔试题【内部培训】

    关于笔试面试,推荐下面链接: 竞聘主值(机组长)常用的一道面试题1 竞聘主值(机组长)常用面试题2:全厂停电处理思路 本次副值竞聘试题及答案[内部培训] 汽机主值考试试题 分享一张汽机专业月考试卷,学 ...

  • 汽门严密性试验怎么才算合格?

    相关学习笔记推荐: ETS通道试验学习详解[推荐] 超速试验为什么需要带25%额定负荷,运行3~4h后立即进行 为什么电超速试验时要拉住注油试验手柄? 多组详图学习青汽机组注油试验油路变化(青汽学习笔 ...

  • 【核电汽轮机超速影响因素分析】

    原创:孙康娜 摘  要:安全性是核电汽轮机设计至关重要的关键问题,汽轮机超速水平是汽轮机安全性设计需要考核的重要指标之一.针对汽轮机阀门的延迟和关闭时间.逆止阀配置.轴系转动惯量以及湿蒸汽等因素对核电 ...

  • 哪些情况不能做超速试验?【试验学习笔记4】

    汽轮机试验学习系列4超速试验学习,回顾一下前篇试验学习内容: 认识一下汽轮机相关试验[试验学习笔记1] 阀门传动试验怎么做?[试验学习笔记2] 汽门严密性试验怎么才算合格? 关于超速推文也比较多,推荐 ...

  • 【上汽超临界600MW机组一键启停功能技术改造】

    上汽智能运维联合团队 本次技术改造的对象是某600MW超临界电厂机组,2004年由上海汽轮机厂(下称上汽厂)交付投运,型号:600MW超临界中间再热凝汽式汽轮机(N600-24.2/566/566型) ...

  • 机组滑参数停机步骤总结

    关于停机: 汽轮机停机后转子最大弯曲在哪?哪段时间起动最危险?为什么? 为什么正常停机时负荷没有减到零,不能进行发电机解列? 滑参数停机总结(调节级滑至300℃),这是高手!! 为什么正常停机要300 ...

  • 措施 | 抑制汽轮机甩负荷时动态超速的措施

    一.抑制汽轮机甩负荷时的动态超速的措施 由于汽轮机对象特性(转子时间常数过小,蒸汽容积时间常数过大),极易在发电机甩负荷时造成转子过大的动态超速,除了提高进汽阀门关闭速度外,还必须在阀门配置以及控制系 ...

  • 【多路补汽汽轮机甩负荷控制策略与应用】

    上海汽轮机厂有限公司设计的多路补汽类型的汽轮机目前所应用的领域为化工余热利用行业,利用化工装置(如PTA装置)中的余汽驱动汽轮发电机组进行发电,这种装置的余汽一般为低参数的饱和蒸汽,基本会产生3~4路 ...

  • 汽轮机超速原因及防止超速保护措施

      一.为什么不能超速? 1)汽轮机在运行过程中,叶片所受的离心力和转速的平方成正比,即是说,转速虽然上升不大,但转子上所承受的离心力就成几何倍的增长,这在汽轮机设计的时候就考虑到的,所以超速现象对汽 ...

  • 防止汽轮机停机过程中超速技术措施

    温馨提示:蓝色加粗字体为相关知识链接. 技术提出事件背景: 某厂锅炉MFT联跳汽机,19:43分汽机转速降至48r/min,19:40分以后汽机转速有升高现象,在汽机挂闸建立安全油压前,汽机转速最高升 ...

  • 狗的弱点在哪里?被疯狗攻击时正确的应对措施是什么?

    我曾经被农村的疯狗追过,幸亏我知道狗的弱点,三下五除二就把这条疯狗收拾了!事后我和狗主人一起吃的狗肉火锅!有人会问了:当时我是怎么对付的疯狗呢?有什么好办法呢? 现在想想,我也挺后怕的,但是当时我也是 ...

  • 《全职高手》兴欣战队最靠谱队友是他,别人甩锅时只有他在补救!

    不容易,追了<全职高手>那么久,好像就没遇到过太多低谷期,即使偶尔有情绪相对低落的时候,但也会很快反弹.没有想到临近结局,整部剧突然来到冰点,前一场还各种连胜炙手可热,下一场输了比赛就面临 ...

  • 【深度】为什么汽轮机甩全负生产的荷热应力小于甩部分负荷?

    一.汽轮机启停和工况变化时的传热现象: 1.凝结放热:当蒸汽与低于蒸汽饱和温度的金属表面接触时,在金属壁表面发生蒸汽凝结现象,蒸汽放出气化潜热,蒸汽凝结放热在金属表面形成水膜--膜状凝结,其放热系数达 ...

  • 你给人当小三时有多天真,别人甩你时就会有多狠

    每一个平凡的日子 都有着不平凡的相遇 还好你来了 ☽ 夕言和你说晚安 - 01 - 姑娘,当你给一个男人做了情人还说我什么都不在意的时候,你有没有想过自己有一天会后悔?当你和他缠缠绵绵的时候,你有没有 ...

  • 机组低负荷运行下的节能措施,比较全面~

    长期机组低负荷运行将成为新常态,运行经济性将大幅度下降.为适应当前生产经营形式,更好完成各项年度任务,在保证机组安全的前提下,最大限度降低各项损耗,特制定机组在低负荷下的节能措施,具体如下: 一.管理 ...