C mutex详解

(给CPP开发者加星标,提升C/C++技能)

来源:后打开撒打发了
https://blog.csdn.net/chenxun_2010/article/details/49786263

【导读】:本文主要讲解C++ mutex的具体使用。

一、mutex头文件的介绍

Mutex 又称互斥量,C++ 11中与 Mutex 相关的类(包括锁类型)和函数都声明在 < mutex > 头文件中,所以如果你需要使用 std::mutex,就必须包含 < mutex > 头文件。规范

下面是mutex头文件中内容:

mutex类4种

  • std::mutex,最基本的 Mutex 类。
  • std::recursive_mutex,递归 Mutex 类。
  • std::time_mutex,定时 Mutex 类。
  • std::recursive_timed_mutex,定时递归 Mutex 类。

Lock 类(两种)

  • std::lock_guard,与 Mutex RAII 相关,方便线程对互斥量上锁。
  • std::unique_lock,与 Mutex RAII 相关,方便线程对互斥量上锁,但提供了更好的上锁和解锁控制。

其他类型

  • std::once_flag
  • std::adopt_lock_t
  • std::defer_lock_t
  • std::try_to_lock_t

函数

  • std::try_lock,尝试同时对多个互斥量上锁。
  • std::lock,可以同时对多个互斥量上锁。

std::call_once,如果多个线程需要同时调用某个函数,call_once 可以保证多个线程对该函数只调用一次。

二、meutex类的介绍

std::mutex 介绍

下面以 std::mutex 为例介绍 C++11 中的互斥量用法。

std::mutex 是C++11 中最基本的互斥量,std::mutex 对象提供了独占所有权的特性——即不支持递归地对 std::mutex 对象上锁,而 std::recursive_lock 则可以递归地对互斥量对象上锁。

std::mutex 的成员函数

  1. 构造函数,std::mutex不允许拷贝构造,也不允许 move 拷贝,最初产生的 mutex 对象是处于 unlocked 状态的。

  2. lock(),调用线程将锁住该互斥量。线程调用该函数会发生下面 3 种情况:(1). 如果该互斥量当前没有被锁住,则调用线程将该互斥量锁住,直到调用 unlock之前,该线程一直拥有该锁。(2). 如果当前互斥量被其他线程锁住,则当前的调用线程被阻塞住。(3). 如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)。

  3. unlock(), 解锁,释放对互斥量的所有权。

  4. try_lock(),尝试锁住互斥量,如果互斥量被其他线程占有,则当前线程也不会被阻塞。线程调用该函数也会出现下面 3 种情况,(1). 如果当前互斥量没有被其他线程占有,则该线程锁住互斥量,直到该线程调用 unlock 释放互斥量。(2). 如果当前互斥量被其他线程锁住,则当前调用线程返回 false,而并不会被阻塞掉。(3). 如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)。

来看一个mutex的用法:

// mutex example
#include <iostream>       // std::cout
#include <thread>         // std::thread
#include <mutex>          // std::mutex
 
std::mutex mtx;           // mutex for critical section
 
void print_block(int n, char c) {
 // critical section (exclusive access to std::cout signaled by locking mtx):
 mtx.lock();
 for (int i = 0; i<n; ++i) { std::cout << c; }
 std::cout << '\n';
 mtx.unlock();
}
 
int main()
{
 std::thread th1(print_block, 50, '*');
 std::thread th2(print_block, 50, '$');
 
 th1.join();
 th2.join();
 
 return 0;
}

如果不使用mutex那么输出可能是这样的:线程之间存在乱码

三、recursive_mutex类的介绍

std::recursive_mutex 与 std::mutex 一样,也是一种可以被上锁的对象,但是和 std::mutex 不同的是,std::recursive_mutex 允许同一个线程对互斥量多次上锁(即递归上锁),来获得对互斥量对象的多层所有权,std::recursive_mutex 释放互斥量时需要调用与该锁层次深度相同次数的 unlock(),可理解为 lock() 次数和 unlock() 次数相同,除此之外,std::recursive_mutex 的特性和 std::mutex 大致相同。

四、time_mutex类的介绍

std::time_mutex 比 std::mutex 多了两个成员函数,try_lock_for(),try_lock_until()。

try_lock_for 函数接受一个时间范围,表示在这一段时间范围之内线程如果没有获得锁则被阻塞住(与 std::mutex 的 try_lock() 不同,try_lock 如果被调用时没有获得锁则直接返回 false),如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超时(即在指定时间内还是没有获得锁),则返回 false。

try_lock_until 函数则接受一个时间点作为参数,在指定时间点未到来之前线程如果没有获得锁则被阻塞住,如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超时(即在指定时间内还是没有获得锁),则返回 false。

下面的小例子说明了 std::time_mutex 的用法。

#include <iostream>       // std::cout#include <chrono>         // std::chrono::milliseconds#include <thread>         // std::thread#include <mutex>          // std::timed_mutex

std::timed_mutex mtx;

void fireworks() {  // waiting to get a lock: each thread prints '-' every 200ms:  while (!mtx.try_lock_for(std::chrono::milliseconds(200))) {    std::cout << '-';  }  // got a lock! - wait for 1s, then this thread prints '*'  std::this_thread::sleep_for(std::chrono::milliseconds(1000));  std::cout << '*\n';  mtx.unlock();}

int main (){  std::thread threads[10];  // spawn 10 threads:  for (int i=0; i<10; ++i)    threads[i] = std::thread(fireworks);

  for (auto& th : threads) th.join();

  return 0;}

五、std::recursive_timed_mutex类的介绍

和 std:recursive_mutex 与 std::mutex 的关系一样,std::recursive_timed_mutex 的特性也可以从 std::timed_mutex 推导出来,感兴趣的同鞋可以自行查阅

六、lock类的介绍

(1)std::lock_guard 介绍

std::lock_gurad 是 C++11 中定义的模板类。定义如下:

template <class Mutex> class lock_guard;

lock_guard 对象通常用于管理某个锁(Lock)对象,因此与 Mutex RAII 相关,方便线程对互斥量上锁,即在某个 lock_guard 对象的声明周期内,它所管理的锁对象会一直保持上锁状态;而 lock_guard 的生命周期结束之后,它所管理的锁对象会被解锁(注:类似 shared_ptr 等智能指针管理动态分配的内存资源)。

模板参数 Mutex 代表互斥量类型,例如 std::mutex 类型,它应该是一个基本的 BasicLockable 类型,标准库中定义几种基本的 BasicLockable 类型,分别 std::mutex, std::recursive_mutex, std::timed_mutex,std::recursive_timed_mutex(以上四种类型均已在上一篇博客中介绍)以及 std::unique_lock(本文后续会介绍 std::unique_lock)。(注:BasicLockable 类型的对象只需满足两种操作,lock 和 unlock,另外还有 Lockable 类型,在 BasicLockable 类型的基础上新增了 try_lock 操作,因此一个满足 Lockable 的对象应支持三种操作:lock,unlock 和 try_lock;最后还有一种 TimedLockable 对象,在 Lockable 类型的基础上又新增了 try_lock_for 和 try_lock_until 两种操作,因此一个满足 TimedLockable 的对象应支持五种操作:lock, unlock, try_lock, try_lock_for, try_lock_until)。

在 lock_guard 对象构造时,传入的 Mutex 对象(即它所管理的 Mutex 对象)会被当前线程锁住。在lock_guard 对象被析构时,它所管理的 Mutex 对象会自动解锁,由于不需要程序员手动调用 lock 和 unlock 对 Mutex 进行上锁和解锁操作,因此这也是最简单安全的上锁和解锁方式,尤其是在程序抛出异常后先前已被上锁的 Mutex 对象可以正确进行解锁操作,极大地简化了程序员编写与 Mutex 相关的异常处理代码。

值得注意的是,lock_guard 对象并不负责管理 Mutex 对象的生命周期,lock_guard 对象只是简化了 Mutex 对象的上锁和解锁操作,方便线程对互斥量上锁,即在某个 lock_guard 对象的声明周期内,它所管理的锁对象会一直保持上锁状态;而 lock_guard 的生命周期结束之后,它所管理的锁对象会被解锁。

// lock_guard example#include <iostream>       // std::cout#include <thread>         // std::thread#include <mutex>          // std::mutex, std::lock_guard#include <stdexcept>      // std::logic_error

std::mutex mtx;

void print_even (int x) {  if (x%2==0) std::cout << x << ' is even\n';  else throw (std::logic_error('not even'));}

void print_thread_id (int id) {  try {    // using a local lock_guard to lock mtx guarantees unlocking on destruction / exception:    std::lock_guard<std::mutex> lck (mtx);    print_even(id);  }  catch (std::logic_error&) {    std::cout << '[exception caught]\n';  }}

int main (){  std::thread threads[10];  // spawn 10 threads:  for (int i=0; i<10; ++i)    threads[i] = std::thread(print_thread_id,i+1);

  for (auto& th : threads) th.join();

  return 0;}

std::lock_guard 构造函数

locking (1) explicit lock_guard (mutex_type& m);
adopting (2) lock_guard (mutex_type& m, adopt_lock_t tag);
copy[deleted] ( 3 ) lock_guard (const lock_guard&) = delete;
  1. locking 初始化

lock_guard 对象管理 Mutex 对象 m,并在构造时对 m 进行上锁(调用 m.lock())。

  1. adopting初始化

lock_guard 对象管理 Mutex 对象 m,与 locking 初始化(1) 不同的是, Mutex 对象 m 已被当前线程锁住。

  1. 拷贝构造

lock_guard 对象的拷贝构造和移动构造(move construction)均被禁用,因此 lock_guard 对象不可被拷贝构造或移动构造。

#include <iostream>       // std::cout
#include <thread>         // std::thread
#include <mutex>          // std::mutex, std::lock_guard, std::adopt_lock
 
std::mutex mtx;           // mutex for critical section
 
void print_thread_id(int id) {
 mtx.lock();
 std::lock_guard<std::mutex> lck(mtx, std::adopt_lock);
 std::cout << 'thread #' << id << '\n';
}
 
int main()
{
 std::thread threads[10];
 // spawn 10 threads:
 for (int i = 0; i<10; ++i)
  threads[i] = std::thread(print_thread_id, i + 1);
 
 for (auto& th : threads) th.join();
 
 return 0;
}

在 print_thread_id 中,我们首先对 mtx 进行上锁操作(mtx.lock();),然后用 mtx 对象构造一个 lock_guard 对象(std::lock_guardstd::mutex lck(mtx, std::adopt_lock);),注意此时 Tag 参数为 std::adopt_lock,表明当前线程已经获得了锁,此后 mtx 对象的解锁操作交由 lock_guard 对象 lck 来管理,在 lck 的生命周期结束之后,mtx 对象会自动解锁。

lock_guard 最大的特点就是安全易于使用,请看下面例子(参考),在异常抛出的时候通过 lock_guard 对象管理的 Mutex 可以得到正确地解锁。

#include <iostream>       // std::cout#include <thread>         // std::thread#include <mutex>          // std::mutex, std::lock_guard#include <stdexcept>      // std::logic_error

std::mutex mtx;

void print_even(int x) { if (x % 2 == 0) std::cout << x << ' is even\n'; else throw (std::logic_error('not even'));}

void print_thread_id(int id) { try {  // using a local lock_guard to lock mtx guarantees unlocking on destruction / exception:  std::lock_guard<std::mutex> lck(mtx);  print_even(id); } catch (std::logic_error&) {  std::cout << '[exception caught]\n'; }}

int main(){ std::thread threads[10]; // spawn 10 threads: for (int i = 0; i<10; ++i)  threads[i] = std::thread(print_thread_id, i + 1);

 for (auto& th : threads) th.join();

 return 0;}

(2)std::unique_lock 介绍

但是 lock_guard 最大的缺点也是简单,没有给程序员提供足够的灵活度,因此,C++11 标准中定义了另外一个与 Mutex RAII 相关类 unique_lock,该类与 lock_guard 类相似,也很方便线程对互斥量上锁,但它提供了更好的上锁和解锁控制。

顾名思义,unique_lock 对象以独占所有权的方式( unique owership)管理 mutex 对象的上锁和解锁操作,所谓独占所有权,就是没有其他的 unique_lock 对象同时拥有某个 mutex 对象的所有权。

在构造(或移动(move)赋值)时,unique_lock 对象需要传递一个 Mutex 对象作为它的参数,新创建的 unique_lock 对象负责传入的 Mutex 对象的上锁和解锁操作。

std::unique_lock 对象也能保证在其自身析构时它所管理的 Mutex 对象能够被正确地解锁(即使没有显式地调用 unlock 函数)。因此,和 lock_guard 一样,这也是一种简单而又安全的上锁和解锁方式,尤其是在程序抛出异常后先前已被上锁的 Mutex 对象可以正确进行解锁操作,极大地简化了程序员编写与 Mutex 相关的异常处理代码。

值得注意的是,unique_lock 对象同样也不负责管理 Mutex 对象的生命周期,unique_lock 对象只是简化了 Mutex 对象的上锁和解锁操作,方便线程对互斥量上锁,即在某个 unique_lock 对象的声明周期内,它所管理的锁对象会一直保持上锁状态;而 unique_lock 的生命周期结束之后,它所管理的锁对象会被解锁,这一点和 lock_guard 类似,但 unique_lock 给程序员提供了更多的自由,我会在下面的内容中给大家介绍 unique_lock 的用法。

另外,与 lock_guard 一样,模板参数 Mutex 代表互斥量类型,例如 std::mutex 类型,它应该是一个基本的 BasicLockable 类型,标准库中定义几种基本的 BasicLockable 类型,分别 std::mutex, std::recursive_mutex, std::timed_mutex,std::recursive_timed_mutex (以上四种类型均已在上一篇博客中介绍)以及 std::unique_lock(本文后续会介绍 std::unique_lock)。(注:BasicLockable 类型的对象只需满足两种操作,lock 和 unlock,另外还有 Lockable 类型,在 BasicLockable 类型的基础上新增了 try_lock 操作,因此一个满足 Lockable 的对象应支持三种操作:lock,unlock 和 try_lock;最后还有一种 TimedLockable 对象,在 Lockable 类型的基础上又新增了 try_lock_for 和 try_lock_until 两种操作,因此一个满足 TimedLockable 的对象应支持五种操作:lock, unlock, try_lock, try_lock_for, try_lock_until)。

std::unique_lock 构造函数

std::unique_lock 的构造函数的数目相对来说比 std::lock_guard 多,其中一方面也是因为 std::unique_lock 更加灵活,从而在构造 std::unique_lock 对象时可以接受额外的参数。总地来说,std::unique_lock 构造函数如下:

default (1) unique_lock() noexcept;
locking (2) explicit unique_lock(mutex_type& m);
try-locking (3) unique_lock(mutex_type& m, try_to_lock_t tag);
deferred (4) unique_lock(mutex_type& m, defer_lock_t tag) noexcept;
adopting (5) unique_lock(mutex_type& m, adopt_lock_t tag);
locking for (6) template <class Rep, class Period> unique_lock(mutex_type& m, const chrono::duration<Rep,Period>& rel_time);
locking until (7) template <class Clock, class Duration> unique_lock(mutex_type& m, const chrono::time_point<Clock,Duration>& abs_time);
copy [deleted] (8) unique_lock(const unique_lock&) = delete;
move (9) unique_lock(unique_lock&& x);

下面我们来分别介绍以上各个构造函数:

(1) 默认构造函数

新创建的 unique_lock 对象不管理任何 Mutex 对象。

(2) locking 初始化

新创建的 unique_lock 对象管理 Mutex 对象 m,并尝试调用 m.lock() 对 Mutex 对象进行上锁,如果此时另外某个 unique_lock 对象已经管理了该 Mutex 对象 m,则当前线程将会被阻塞。

(3) try-locking 初始化

新创建的 unique_lock 对象管理 Mutex 对象 m,并尝试调用 m.try_lock() 对 Mutex 对象进行上锁,但如果上锁不成功,并不会阻塞当前线程。

(4) deferred 初始化

新创建的 unique_lock 对象管理 Mutex 对象 m,但是在初始化的时候并不锁住 Mutex 对象。m 应该是一个没有当前线程锁住的 Mutex 对象。

(5) adopting 初始化

新创建的 unique_lock 对象管理 Mutex 对象 m,  m 应该是一个已经被当前线程锁住的 Mutex 对象。(并且当前新创建的 unique_lock 对象拥有对锁(Lock)的所有权)。

(6) locking 一段时间(duration)

新创建的 unique_lock 对象管理 Mutex 对象 m,并试图通过调用 m.try_lock_for(rel_time) 来锁住 Mutex 对象一段时间(rel_time)。

(7) locking 直到某个时间点(time point)

新创建的 unique_lock 对象管理 Mutex 对象m,并试图通过调用 m.try_lock_until(abs_time) 来在某个时间点(abs_time)之前锁住 Mutex 对象。

(8) 拷贝构造 [被禁用]

unique_lock 对象不能被拷贝构造。

(9) 移动(move)构造

新创建的 unique_lock 对象获得了由 x 所管理的 Mutex 对象的所有权(包括当前 Mutex 的状态)。调用 move 构造之后,  x 对象如同通过默认构造函数所创建的,就不再管理任何 Mutex 对象了。

综上所述,由 (2) 和 (5) 创建的 unique_lock 对象通常拥有 Mutex 对象的锁。而通过 (1) 和 (4) 创建的则不会拥有锁。通过 (3),(6) 和 (7) 创建的 unique_lock 对象,则在 lock 成功时获得锁。

关于unique_lock 的构造函数,请看下面例子(参考):

#include <iostream>       // std::cout
#include <thread>         // std::thread
#include <mutex>          // std::mutex, std::lock, std::unique_lock
// std::adopt_lock, std::defer_lock
std::mutex foo, bar;
 
void task_a() {
 std::lock(foo, bar);         // simultaneous lock (prevents deadlock)
 std::unique_lock<std::mutex> lck1(foo, std::adopt_lock);
 std::unique_lock<std::mutex> lck2(bar, std::adopt_lock);
 std::cout << 'task a\n';
 // (unlocked automatically on destruction of lck1 and lck2)
}
 
void task_b() {
 // foo.lock(); bar.lock(); // replaced by:
 std::unique_lock<std::mutex> lck1, lck2;
 lck1 = std::unique_lock<std::mutex>(bar, std::defer_lock);
 lck2 = std::unique_lock<std::mutex>(foo, std::defer_lock);
 std::lock(lck1, lck2);       // simultaneous lock (prevents deadlock)
 std::cout << 'task b\n';
 // (unlocked automatically on destruction of lck1 and lck2)
}
 
 
int main()
{
 std::thread th1(task_a);
 std::thread th2(task_b);
 
 th1.join();
 th2.join();
 
 return 0;
}

- EOF -

(0)

相关推荐

  • (5条消息) C++锁的管理

    前言 锁管理遵循RAII习语来处理资源.锁管理器在构造函数中自动绑定它的互斥体,并在析构函数中释放它.这大大减少了死锁的风险,因为运行时会处理互斥体.. 锁管理器在C++ 11中有两种: 用于简单的s ...

  • 胎元命宫详解

    胎元命宫详解 胎元命宫 8.1 胎元 胎, 指人受精怀胎的月份. 其起法是: 人生月后紧接着这个月的天干与生月后第三个月的地支相配, 就为胎元. 如1998年八月生人, 八月为辛酉, 辛后一干是壬, ...

  • 批八字算婚姻详解

    批八字算婚姻详解 很多人喜欢在孩子一出生的时候就给他们算一下八字,因为他们相信孩子的八字和命运是相对注定了的,通过算命之后可以顺利的避免一些可能在生活中遇到的一些问题和坎坷,也可以顺利度过一些&quo ...

  • 电视选购12个重要参数详解,看完你就是专家,附:爆款推荐

    本内容来源于@什么值得买APP,观点仅代表作者本人 |作者:白云上的鱼 创作立场声明:分享电视选购知识,重要参数详解,轻松搞定电视选购. 目前电视的选择太多太多了,品牌百花齐放琳琅满目,各种高科技加成 ...

  • 倪海厦:病是问出来的|问诊十法详解

    倪海厦,美国经方中医,被喻为当代少见的"命.相.卜.山.医"五术兼备之旷世奇人. (倪师)中医的问诊十个法则 我们经方家的问诊非常重要,因此有必要为读者说明一下,如何找经方家看病, ...

  • 为何医生让他把氨氯地平换成缬沙坦?药师详解两类降压药的好与坏

    硝苯地平.氨氯地平.缬沙坦.氯沙坦等等,这些降压药都是高血压患者常用的降压药.从名字中也可以看出这些降压药属于两类不同的降压药,一种是地平类,即为钙离子拮抗剂(CCB),另外一种是沙坦类,即为血管紧张 ...

  • 几何探究类压轴题:精编20例及详解

    成才路上 初中精品学习资料 104篇原创内容 公众号 / END /

  • 高考物理11类重点题型全解析! 附经典例题&详解

    高考理科综合卷中,物理部分选择题有单项和双项选择题两种题型.从最近几年的试题看: 4道单项选择难度低,考查的考点相对稳定且相对单一,涉及的知识点主要有共点力平衡.热力学第一定律.气体状态方程.分子动理 ...

  • 【同步讲练】七年级下册:二元一次方程组七种典型例题详解,一次解决应用问题!

    【同步讲练】七年级下册:二元一次方程组七种典型例题详解,一次解决应用问题!

  • 行书基础笔法详解,以兰亭序为例,建议收藏学习

    学好行书 4篇原创内容 公众号 欢迎您查看行书名帖 在行书的书写中,我们一方面要注意其字形,另一方面更要注意笔画的写法,因为笔画是字的基本构成元素.因此,把握好每个笔画的写法是最为重要的一个学习环节. ...