Cell | 王二涛研究团队在丛枝菌根共生“自我调节”研究中取得重大进展
2021年10月12日,分子植物卓越中心王二涛研究团队在国际顶尖学术期刊《细胞》(Cell)上发表题为“A phosphate starvation response-centered network regulates mycorrhizal symbiosis(磷信号中枢网络调控菌根共生)”的封面论文。首次绘制了水稻-丛枝菌根共生的转录调控网络,发现植物直接磷营养吸收途径(根途径)和共生磷营养吸收途径(共生途径)均是受到植物的磷信号网络统一调控,回答了菌根共生领域“自我调节”这一困扰领域的重要科学问题。
研究背景
磷是植物生长发育必需的三大营养元素之一,是植物体重要的组成成分,广泛参与植物体内众多酶促反应及细胞信号转导过程。在农业生产中,为提高农作物产量,目前主要依靠大量施加氮肥和磷肥来实现增产,但同时也造成了严重的环境污染。
植物主要通过两种途径获取营养:第一种是植物根系直接从土壤吸收营养,称为直接营养吸收途径;植物在感知土壤中的氮、磷等营养元素浓度后,通过根的外表皮层和根毛细胞直接从土壤中吸收营养元素。第二种是植物通过与菌根真菌共生从外界环境中获取营养,称为间接营养吸收途径。
植物和丛枝菌根真菌建立共生与植物由水生向陆生进化发生在同一时期,是自然界中最古老的共生关系,是植物适应陆地环境关键事件之一。丛枝菌根共生是最普遍的一种共生,是植物从环境中高效获取营养的重要途径,丛枝菌根真菌提供给宿主植物的磷元素占宿主植物总磷获取量的70%以上。中国科学院分子植物科学卓越创新中心王二涛研究组2017年发表在《科学》的研究工作表明,在菌根共生中,宿主植物以脂肪酸的形式为菌根真菌提供碳源,而菌根真菌会帮助宿主植物增加对磷等营养元素的吸收。
过去50多年的研究发现:植物根据自身的磷营养状态调控其与丛枝菌根真菌之间的共生,研究人员称为菌根共生的“自我调节”(“self-regulation” nature of mycorrhizal symbiosis),但其调节机制未知。
菌根共生的丛枝结构
研究过程
研究以水稻中菌根共生相关基因的启动子为诱饵,进行水稻转录因子文库筛选,首次绘制了水稻-丛枝菌根共生的转录调控网络,并验证了多个调控丛枝菌根共生的转录因子。令人意外的是,磷响应转录因子OsPHR1/2/3处于菌根共生转录调控网络的核心位置。进一步研究发现,PHRs通过结合P1BS顺式作用元件激活菌根共生相关基因的表达,正向调控丛枝菌根共生。Osphr1/2/3三突变体中,菌根真菌不能有效定殖水稻根部皮层细胞,表明PHRs是菌根共生关键调控因子。
SPX是磷的感受器,通过蛋白互作抑制PHRs结合到目的基因的启动子上,抑制低磷响应基因的表达。研究发现,水稻中的SPX1能够抑制OsPHR2激活菌根共生相关基因的表达。PHR过量表达植株和SPX缺失突变体的菌根共生对高磷处理不敏感,表明高磷通过PHR-SPX模块抑制菌根共生。
高磷通过SPX-PHR模块控制菌根共生
相关信息
为了获取粮食的丰收,农业生产施加大量的含磷化肥,严重污染生态环境,是我国农业生产中亟待解决的重大问题之一。通过提高PHR基因的表达,有望达到增加水稻直接吸收磷营养和间接通过丛枝菌根共生磷营养吸收的目的,降低农业磷肥的施用,为农业生产的可持续发展提供新的方案。
分子植物科学卓越创新中心博士后石进彩为第一作者,王二涛研究员为通讯作者。该研究得到国家自然科学基金、中科院基础研究青年科学家项目、中国科学院先导科技专项和国家重点研发项目的资助。
王二涛研究员及其团队合影
来源:中科院分子植物卓越中心(CEMPS_CAS)