我是如何一步步的在并行编程中将lock锁次数降到最低实现无锁编程
在并行编程中,经常会遇到多线程间操作共享集合的问题,很多时候大家都很难逃避这个问题做到一种无锁编程状态,你也知道一旦给共享集合套上lock之后,并发和伸缩能力往往会造成很大影响,这篇就来谈谈如何尽可能的减少lock锁次数甚至没有。
一:缘由
1. 业务背景
昨天在review代码的时候,看到以前自己写的这么一段代码,精简后如下:
private static List<long> ExecuteFilterList(int shopID, List<MemoryCacheTrade> trades, List<FilterConditon> filterItemList, MatrixSearchContext searchContext) { var customerIDList = new List<long>(); var index = 0; Parallel.ForEach(filterItemList, new ParallelOptions() { MaxDegreeOfParallelism = 4 }, (filterItem) => { var context = new FilterItemContext() { StartTime = searchContext.StartTime, EndTime = searchContext.EndTime, ShopID = shopID, Field = filterItem.Field, FilterType = filterItem.FilterType, ItemList = filterItem.FilterValue, SearchList = trades.ToList() }; var smallCustomerIDList = context.Execute(); lock (filterItemList) { if (index == 0) { customerIDList.AddRange(smallCustomerIDList); index++; } else { customerIDList = customerIDList.Intersect(smallCustomerIDList).ToList(); } } }); return customerIDList; }
这段代码实现的功能是这样的,filterItemList承载着所有原子化的筛选条件,然后用多线程的形式并发执行里面的item,最后将每个item获取的客户人数集合在高层进行整体求交,画个简图就是下面这样。
2. 问题分析
其实这代码存在着一个很大的问题,在Parallel中直接使用lock锁的话,filterItemList有多少个,我的lock就会锁多少次,这对并发和伸缩性是有一定影响的,现在就来想想怎么优化吧!
3. 测试案例
为了方便演示,我模拟了一个小案例,方便大家看到实时结果,修改后的代码如下:
public static void Main(string[] args) { var filterItemList = new List<string>() { "conditon1", "conditon2", "conditon3", "conditon4", "conditon5", "conditon6" }; ParallelTest1(filterItemList); } public static void ParallelTest1(List<string> filterItemList) { var totalCustomerIDList = new List<int>(); bool isfirst = true; Parallel.ForEach(filterItemList, new ParallelOptions() { MaxDegreeOfParallelism = 2 }, (query) => { var smallCustomerIDList = GetCustomerIDList(query); lock (filterItemList) { if (isfirst) { totalCustomerIDList.AddRange(smallCustomerIDList); isfirst = false; } else { totalCustomerIDList = totalCustomerIDList.Intersect(smallCustomerIDList).ToList(); } Console.WriteLine($"{DateTime.Now} 被锁了"); } }); Console.WriteLine($"最后交集客户ID:{string.Join(",", totalCustomerIDList)}"); } public static List<int> GetCustomerIDList(string query) { var dict = new Dictionary<string, List<int>>() { ["conditon1"] = new List<int>() { 1, 2, 4, 7 }, ["conditon2"] = new List<int>() { 1, 4, 6, 7 }, ["conditon3"] = new List<int>() { 1, 4, 5, 7 }, ["conditon4"] = new List<int>() { 1, 2, 3, 7 }, ["conditon5"] = new List<int>() { 1, 2, 4, 5, 7 }, ["conditon6"] = new List<int>() { 1, 3, 4, 7, 9 }, }; return dict[query]; }------ output ------2020/04/21 15:53:34 被锁了2020/04/21 15:53:34 被锁了2020/04/21 15:53:34 被锁了2020/04/21 15:53:34 被锁了2020/04/21 15:53:34 被锁了2020/04/21 15:53:34 被锁了最后交集客户ID:1,7
二:第一次优化
从结果中可以看到,filterItemList有6个,锁次数也是6次,那如何降低呢? 其实实现Parallel代码的FCL大神也考虑到了这个问题,从底层给了一个很好的重载,如下所示:
public static ParallelLoopResult ForEach<TSource, TLocal>(OrderablePartitioner<TSource> source, ParallelOptions parallelOptions, Func<TLocal> localInit, Func<TSource, ParallelLoopState, long, TLocal, TLocal> body, Action<TLocal> localFinally);
这个重载很特别,多了两个参数localInit和localFinally,过会说一下什么意思,先看修改后的代码体会一下
public static void ParallelTest2(List<string> filterItemList) { var totalCustomerIDList = new List<int>(); var isfirst = true; Parallel.ForEach<string, List<int>>(filterItemList, new ParallelOptions() { MaxDegreeOfParallelism = 2 }, () => { return null; }, (query, loop, index, smalllist) => { var smallCustomerIDList = GetCustomerIDList(query); if (smalllist == null) return smallCustomerIDList; return smalllist.Intersect(smallCustomerIDList).ToList(); }, (finalllist) => { lock (filterItemList) { if (isfirst) { totalCustomerIDList.AddRange(finalllist); isfirst = false; } else { totalCustomerIDList = totalCustomerIDList.Intersect(finalllist).ToList(); } Console.WriteLine($"{DateTime.Now} 被锁了"); } }); Console.WriteLine($"最后交集客户ID:{string.Join(",", totalCustomerIDList)}"); }------- output ------2020/04/21 16:11:46 被锁了2020/04/21 16:11:46 被锁了最后交集客户ID:1,7Press any key to continue . . .
很好,这次优化将lock次数从6次降到了2次,这里我用了 new ParallelOptions() { MaxDegreeOfParallelism = 2 }
设置了并发度为最多2个CPU核,程序跑起来后会开两个线程,将一个大集合划分为2个小集合,相当于1个集合3个条件,第一个线程在执行3个条件的起始处会执行你的localInit函数,在3个条件迭代完之后再执行你的localFinally,第二个线程也是按照同样方式执行自己的3个条件,说的有点晦涩,画一张图说明吧。
三: 第二次优化
如果你了解Task<T>这种带有返回值的Task,这就好办了,多少个filterItemList就可以开多少个Task,反正Task底层是使用线程池承载的,所以不用怕,这样就完美的实现无锁编程。
public static void ParallelTest3(List<string> filterItemList) { var totalCustomerIDList = new List<int>(); var tasks = new Task<List<int>>[filterItemList.Count]; for (int i = 0; i < filterItemList.Count; i++) { tasks[i] = Task.Factory.StartNew((query) => { return GetCustomerIDList(query.ToString()); }, filterItemList[i]); } Task.WaitAll(tasks); for (int i = 0; i < tasks.Length; i++) { var smallCustomerIDList = tasks[i].Result; if (i == 0) { totalCustomerIDList.AddRange(smallCustomerIDList); } else { totalCustomerIDList = totalCustomerIDList.Intersect(smallCustomerIDList).ToList(); } } Console.WriteLine($"最后交集客户ID:{string.Join(",", totalCustomerIDList)}"); }------ output -------最后交集客户ID:1,7Press any key to continue . . .
四:总结
我们将原来的6个lock优化到了无锁编程,但并不说明无锁编程就一定比带有lock的效率高,大家要结合自己的使用场景合理的使用和混合搭配。
好了,本篇就说到这里,希望对您有帮助。