选择题攻略25:等腰直角三角形的性质,动点问题

如图,点A的坐标为(0,1),点Bx轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示yx的函数关系的图象大致是(  )
参考答案:
解:作ADx轴,作CDAD于点D,若右图所示,
由已知可得,OB=xOA=1,∠AOB=90°,
BAC=90°,AB=AC,点C的纵坐标是y
ADx轴,
∴∠DAO+∠AOD=180°,
∴∠DAO=90°,
∴∠OAB+∠BAD=∠BAD+∠DAC=90°,
∴∠OAB=∠DAC
考点分析:
动点问题的函数图象.
题干分析:
根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立yx的函数关系,从而可以得到哪个选项是正确的.
与等腰三角形有关的试题越来越灵活,特别是在一些综合性较强的压轴题中,等腰三角形都起到关键性的作用,甚至一些压轴题都是围绕等腰三角形来设计。
关于等腰三角形的的求解问题,常常以不同的方式呈现,不少学生由于忽略了分类讨论,造成无法准确解决问题,导致丢分。
(0)

相关推荐