【全等三角形】常见辅助线题型总结,下载口令,见文末

经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。全等三角形指两个全等的三角形,它们的三条边及三个角都对应相等。全等三角形是几何中全等之一。 [2] 根据全等转换,两个全等三角形经过平移、旋转、翻折后,仍旧全等。正常来说,验证两个全等三角形一般用边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS)、和直角三角形的斜边,直角边(HL)来判定。

常见辅助线的作法有以下几种:

1)       遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.

2)       遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.

3)       遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.

4)       过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”

5)       截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.

特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.

一、边边边(SSS)

边边边定理,简称SSS,是平面几何中的重要定理之一。边边边定理的内容是:有三边对应相等的两个三角形全等。它用于证明两个三角形全等。该定理最早由欧几里得证明。

二、边角边(SAS)

各三角形的其中两条边的长度都对应相等,且这两条边的夹角(即这两条边组成的角)都对应相等的话,该两个三角形就是全等三角形。

三、角边角(ASA)

两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”。

角边角是三角形全等的判定方法之一,需要注意的是 角边角中的边必须是两个角公共的一条边 (一个角是由两条边组成的,三角形中的任意两个角都有一条公共边) 。

四、角角边(AAS)

角边角是指两个角和这两个角的公共边,角边角定理可以推出全等。角角边是指两个角和另外一个非公共边,角角边也可以推出全等。

五、直角边(HL)

HL定理是证明两个直角三角形全等的定理,通过证明两个直角三角形直角边和斜边对应相等来证明两个三角形全等。

判定定理为:如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等(简记为HL)是一种特殊判定方法,可转换为ASA

下载口令:全等模型

(0)

相关推荐