普通爬虫vs多线程爬虫vs框架爬虫,Python爬对比

前言

本文的文字及图片过滤网络,可以学习,交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理。

Python爬虫、数据分析、网站开发等案例教程视频免费在线观看

https://space.bilibili.com/523606542

基本开发环境

  • Python 3.6
  • 皮查姆

目标网页分析

网站就选择发表情这个网站吧

网站是静态网页,所有的数据都保存在div标签中,爬取的难度不大。

根据标签提取其中的表情包url地址以及标题就可以了。

普通爬虫实现

import requestsimport parselimport redef change_title(title):    pattern = re.compile(r"[\/\\\:\*\?\"\<\>\|]")  # '/ \ : * ? " < > |'    new_title = re.sub(pattern, "_", title)  # 替换为下划线    return new_titlefor page in range(0, 201):    url = f'https://www.fabiaoqing.com/biaoqing/lists/page/{page}.html'    headers = {        'user-agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36'    }    response = requests.get(url=url, headers=headers)    selector = parsel.Selector(response.text)    divs = selector.css('.tagbqppdiv')    for div in divs:        img_url = div.css('a img::attr(data-original)').get()        title_ = img_url.split('.')[-1]        title = div.css('a img::attr(title)').get()        new_title = change_title(title) + title_        img_content = requests.get(url=img_url, headers=headers).content        path = 'img\\' + new_title        with open(path, mode='wb') as f:            f.write(img_content)            print(title)

代码简单的说明:

1,标题的替换,因为有一些图片的标题,其中会包含特殊字符,在创建文件的时候特殊字符是不能命名的,所以需要使用正则把有可能出现的特殊字符替换掉。

divs = selector.css('.tagbqppdiv')    for div in divs:        img_url = div.css('a img::attr(data-original)').get()        title_ = img_url.split('.')[-1]        title = div.css('a img::attr(title)').get()        new_title = change_title(title) + title_

2,翻页爬取以及模拟浏览器请求网页

img_content = requests.get(url=img_url, headers=headers).content        path = 'img\\' + new_title        with open(path, mode='wb') as f:            f.write(img_content)            print(title)

翻页多点击下一页看一下url地址的变化就可以找到相对应规律了,网站是get请求方式,使用请求请求网页即可,加上标题请求头,伪装浏览器请求,如果不加,网站会识别出你是python爬虫程序请求访问的,不过对于这个网站,其实加不加都差不多的。

3,解析数据提取想要的数据

img_content = requests.get(url=img_url, headers=headers).content        path = 'img\\' + new_title        with open(path, mode='wb') as f:            f.write(img_content)            print(title)

这里我们使用的是parsel解析库,用的是css选择器解析的数据。

就是根据标签属性提取相对应的数据内容。

4,保存数据

img_content = requests.get(url=img_url, headers=headers).content        path = 'img\\' + new_title        with open(path, mode='wb') as f:            f.write(img_content)            print(title)

请求表情包url地址,返回获取内容二进制数据,图片,视频,文件等等都是二进制数据保存的。如果是文字则是text。

path就是文件保存的路径,因为是二进制数据,所以保存方式是wb。

多线程爬虫实现

import requestsimport parselimport reimport concurrent.futuresdef get_response(html_url):    """模拟浏览器请求网址,获得网页源代码"""    headers = {        'user-agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36'    }    response = requests.get(url=html_url, headers=headers)    return responsedef change_title(title):    """正则匹配特殊字符标题"""    pattern = re.compile(r"[\/\\\:\*\?\"\<\>\|]")  # '/ \ : * ? " < > |'    new_title = re.sub(pattern, "_", title)  # 替换为下划线    return new_titledef save(img_url, title):    """保存表情到本地文件"""    img_content = get_response(img_url).content    path = 'img\\' + title    with open(path, mode='wb') as f:        f.write(img_content)        print(title)def main(html_url):    """主函数"""    response = get_response(html_url)    selector = parsel.Selector(response.text)    divs = selector.css('.tagbqppdiv')    for div in divs:        img_url = div.css('a img::attr(data-original)').get()        title_ = img_url.split('.')[-1]        title = div.css('a img::attr(title)').get()        new_title = change_title(title) + title_        save(img_url, new_title)if __name__ == '__main__':    executor = concurrent.futures.ThreadPoolExecutor(max_workers=5)    for page in range(0, 201):        url = f'https://www.fabiaoqing.com/biaoqing/lists/page/{page}.html'        executor.submit(main, url)    executor.shutdown()

简单的代码说明:

其实在前文已经有铺垫了,多线程爬虫就是把每一块都封装成函数,让它每一块代码都有它的作用,然后通过线程模块启动就好。

executor = concurrent.futures.ThreadPoolExecutor(max_workers=5)

最大的线程数

scrapy框架爬虫实现

关于scrapy框架项目的创建这里只是不过多讲了,之前文章有详细讲解过,scrapy框架项目的创建,可以点击下方链接查看

简单使用scrapy爬虫框架批量采集网站数据

items.py

import scrapyfrom ..items import BiaoqingbaoItemclass BiaoqingSpider(scrapy.Spider):    name = 'biaoqing'    allowed_domains = ['fabiaoqing.com']    start_urls = [f'https://www.fabiaoqing.com/biaoqing/lists/page/{page}.html' for page in range(1, 201)]    def parse(self, response):        divs = response.css('#bqb div.ui.segment.imghover div')        for div in divs:            img_url = div.css('a img::attr(data-original)').get()            title = div.css('a img::attr(title)').get()            yield BiaoqingbaoItem(img_url=img_url, title=title)

middlewares.py

BOT_NAME = 'biaoqingbao'SPIDER_MODULES = ['biaoqingbao.spiders']NEWSPIDER_MODULE = 'biaoqingbao.spiders'DOWNLOADER_MIDDLEWARES = {   'biaoqingbao.middlewares.BiaoqingbaoDownloaderMiddleware': 543,}ITEM_PIPELINES = {   'biaoqingbao.pipelines.DownloadPicturePipeline': 300,}IMAGES_STORE = './images'

pipelines.py

import scrapyfrom ..items import BiaoqingbaoItemclass BiaoqingSpider(scrapy.Spider):    name = 'biaoqing'    allowed_domains = ['fabiaoqing.com']    start_urls = [f'https://www.fabiaoqing.com/biaoqing/lists/page/{page}.html' for page in range(1, 201)]    def parse(self, response):        divs = response.css('#bqb div.ui.segment.imghover div')        for div in divs:            img_url = div.css('a img::attr(data-original)').get()            title = div.css('a img::attr(title)').get()            yield BiaoqingbaoItem(img_url=img_url, title=title)

setting.py

BOT_NAME = 'biaoqingbao'SPIDER_MODULES = ['biaoqingbao.spiders']NEWSPIDER_MODULE = 'biaoqingbao.spiders'DOWNLOADER_MIDDLEWARES = {   'biaoqingbao.middlewares.BiaoqingbaoDownloaderMiddleware': 543,}ITEM_PIPELINES = {   'biaoqingbao.pipelines.DownloadPicturePipeline': 300,}IMAGES_STORE = './images'

标清

import scrapyfrom ..items import BiaoqingbaoItemclass BiaoqingSpider(scrapy.Spider):    name = 'biaoqing'    allowed_domains = ['fabiaoqing.com']    start_urls = [f'https://www.fabiaoqing.com/biaoqing/lists/page/{page}.html' for page in range(1, 201)]    def parse(self, response):        divs = response.css('#bqb div.ui.segment.imghover div')        for div in divs:            img_url = div.css('a img::attr(data-original)').get()            title = div.css('a img::attr(title)').get()            yield BiaoqingbaoItem(img_url=img_url, title=title)

简单总结:

三个程序的最大的区别就在于在于爬取速度的相对,但是如果从写代码的时间上面来计算的话,普通是最简单的,因为对于这样的静态网站根本不需要调试,可以从头写到位,加上空格一共也就是29行的代码。

(0)

相关推荐