金属丝编织层编织密度计算公式中D的讨论


金属丝编织层编织密度计算公式中D的讨论

金属丝编织结构在许多电线电缆产品中得到运用,对于特殊场合下需要具有电磁屏蔽功能或具备特殊机械性能的情况下,设计电缆结构是都会采用金属丝编织单元,但在不同的产品标准或测试方法标准中对计算编织密度的有些参数提法要求不一致,以致在测量过程中产生混淆,在此我们罗列有关标准中的提法并进行讨论。

一、相关标准编织密度的计算公式的信息

1. 塑料绝缘控制电缆

08和88版标准编织覆盖密度计算公式一致,单向覆盖系数计算公式中,88版本分母中多了一个2,是两个版本对m(编织锭数)的定义差异造成的,2008年版本m为编织机同一方向的锭数,而1988版本m为锭子总数,刚好相差2倍。

我们来分析一下新、对D的定义差异,1988年版本D定义为编织层平均直径,可以理解为编织层的平均外径(含编织铜丝)吗?但这个D是测量值还是计算值,标准没有说明;2008年版本D定义为编织层的节圆直径,这个节圆直径如何理解?这个节圆直径D是测量值还是计算值,标准也没有说明。

注:下图公式为新版GB/T9330-2020编织屏蔽密度计算公式,把D定义为编织层外径测量值(编者整理、插图)

2. 塑料绝缘电线电缆

    JB/T 8734.1《额定电压450/750V 及以下聚氯乙烯绝缘电缆电线和软线 第1 部分:一般规定》这个标准最近二十多年修改过三次,每次的屏蔽标准密度计算公式没有发生变化,唯一变化的是屏蔽层直径的定义有变化:JB 8734.1-1998版本中D定义为“屏蔽层直径”;JB/T 8734.1-2012版本中D定义为“屏蔽层直径,即成缆外径加上两倍的单丝直径”;JB/T 8734.1-2016版本中D定义为“屏蔽层计算直径”。

JB 8734.1-1998版本中D定义为“屏蔽层直径”,标准中没有阐述“屏蔽层直径”是测量值还是计算值,可以理解为屏蔽层的外径吗?

JB/T 8734.1-2012版本中D定义为“屏蔽层直径,即成缆外径加上两倍的单丝直径”,这里已经明确了是屏蔽层的外径,但没有明确説明“成缆外径”是计算值还是测量值。

JB/T 8734.1-2016版本中D定义为“屏蔽层计算直径”, 但没有説明计算方法是什么。

3. 舰船电缆

    GJB1916-1994版本中定义D为“编织前电缆或软线或线芯直径”,没有説明是测量值还是计算值,IEC60092-350标准中定义D为“编织层平均直径”,可以理解为编织层的平均外径(含编织铜丝)吗?但这个D是测量值还是计算值,标准也没有说明。

4. EN试验方法标准

EN50306-3:2002标准中Φ定义为“编织层下成缆直径加上两倍的单丝标称直径”,这里已经明确了是屏蔽层的外径,但没有明确説明“成缆直径”是计算值还是测量值。

从上述内容我们可以看出不同标准对编织屏蔽直径的定义都不太一样,当进行检测时各人的理解也有所不同,给检测结论带来一定的争议。另外绝大部分编织屏蔽层材料都使用铜导体,企业在进行原材料控制时屏蔽编织密度也控制的比较严,可能会出现同一个样品不同的人、不同的检测机构测出的编织密度出现不一样的结果,甚至出现合格与不合格的情况,因此规定D的定义和测试方法对检测机构或制造企业都很重要。

二、编织密度或单向覆盖系数计算公式推导

我们在这里推导编织密度或单向覆盖系数计算公式不是数学演算,而是从物理意义上确定编织层直径的定义及测量方法。

我们假定:

编织金属单丝的编织节距为:L mm;

屏蔽用金属圆单线直径为d mm;

锭子总数为m,那么单向的锭子数为m/2;

每锭根数为n;

那么单向所有编织丝覆盖的宽度为dmn/2;如下图所示:

此处的D是编织屏蔽的外径(也就是编织层每一根单丝最外点形成的圆面的直径)。

为了计算编织密度,我们把双向编织层进行如下图所示处理,由于二个单向编织层是对称的,可知在一个节距内编织丝重叠部分是一个等边四边形+二个一半的等边四边形。

设等边四边形的面积为A:

从上述理论推导可以看出编织屏蔽外径的物理含义,推导过程中涉及的参数(L、m、n、d、D)都是样品的实际值(客观存在的值),其中D是编织层每一根单丝最外点形成的圆面的直径,如下图所示。

因此,编织层外径应为编织层下直径(成缆外径)加二倍的编织单丝直径。

三、编织层外径D的确定及测量

在本文的上述部分我们已经从理论推导了编织层外径D在电缆结构中所处的位置,D应该称作编织层实测平均外径。

从计算公式我们可知D的大小会影响编织密度,从现有中、外标准中归纳关于D的提法有:编织层的节圆直径、编织层平均直径、屏蔽层直径、屏蔽层直径(即成缆外径加上两倍的单丝直径)、屏蔽层计算直径。除了“屏蔽层计算直径”提法外其他提法在测量过程中不同的测量者理解也不一致。

下面举几个实例,计算不同D情况下的编织密度。

1. KVVP-450/750 10*1.5, 第1类导体

注:
(1)测量值采用纸带法;
(2)采用GB/T9330.1-2008附录A的计算方法
(3)采用IEC60092-350:2020附录A的计算方法

2. KYJVP-450/750 3*1.5, 第2类导体

注:
(1)测量值采用纸带法;
(2)采用GB/T9330.1-2008附录A的计算方法
(3)采用IEC60092-350:2020附录A的计算方法

3. KVVRP-450/750 4*2.5, 第5类导体

注:
(1)测量值采用纸带法;
(2)采用GB/T9330.1-2008附录A的计算方法
(3)采用IEC60092-350:2020附录A的计算方法

从上述三个实例看出:

(1)采用测量编织层下的平均直径和编织层平均外径计算的编织密度数据相差较小;

(2)采用不同标准规定的假设直径计算方法,计算的编织外径,然后再计算编织密度,之间有差异,主要是计算外径与选择的计算方法有关;

(3)实测平均直径与计算外径之间的差异与成缆的绞合方式、导体种类、绕包层的使用等相关的。

编织密度的大小是客观实际的反映,不应受到理论计算参数大小的影响,而且编织密度计算公式理论推导时采用的D是样品的实际外径,因此关于编织密度计算公式中D的定义应为:

编织层下平均直径(测量值)+2倍的编织单丝直径

或编织层平均外径(测量值)。

关于测量方法,依据GB/T2951.11-2008第8.3条规定有二种情况:

a)当软线和电缆的外径不超过25mm时,用测微计、投影仪或类似的仪器在互相垂直的两个方向分别测量;

b)软线和电缆的外径超过25mm时,应用测量带测量其圆周长,然后计算直径。也可使用能直接读数的测量带测量。

由于编织层表面不光滑、成缆线芯不圆整等因素,用测微计等仪器测量会产生一定的误差、没有重复性或再现性,直径测量结果不稳定,建议:不管外径大小一律采用测量带测量样品的平均外径(编织层下的成缆平均直径或编织层平均外径)。

注明:本文作者:吴长顺。鉴于新版GB/T9330-2020标准已颁布实施,故,小编在原内容基础上增加了2020版编织屏蔽密度的计算公式,明确了公式中D的定义。其他未作增加和更改。向原文作者致敬!

(0)

相关推荐

  • 绝对不能错过的工程常用数据表,超全!建议收藏备用!

    工程常用数据一览表: 包含常用材料密度.材料重量计算公式.常用单位换算.管道直径外径对照表.安装线路敷设标注.常用面积体积计算公式.砖.砌体单位重量.建筑安装常用材料重量换算. 01常用材料密度 02 ...

  • 浅析养老金计算公式中的参数含义及作用,介绍养老金的计算方法

    #图文创作打卡挑战活动# 为了让大家学会对自己养老金的计算方法,这里首先把我国享受养老金待遇的人作一分类(主要介绍机关事业单位公职人员和职工养老金),大体可分为机关事业单位工作人员和城镇企业职工及参照 ...

  • 中考数学中的分类讨论技巧

    分类讨论在数学题中经常出现,也是满分率比较低的一种题,同学们在做题的时候经常会犯错误,小题经常忘记分类讨论,大题经常讨论不全,讨论全了结果还不一定对.所以,这种题很容易不小心丢分.下面一起来看看中考数 ...

  • 在中考数学中,分类讨论思想解题技巧是每位...

    在中考数学中,分类讨论思想解题技巧是每位中考学员突破高分的锦囊之一,比如动点产生的等腰三角形问题中非常重要的思想方法!也是很多学生最怕的题型之一,在中考压轴题中非常普遍.比如因动点产生的平行四边形问题 ...

  • 矩形中的分类讨论与多解

    摘自<初中数学典型题思路分析>计划附赠资料 注:  关注本公众号并回复"初中数学解题思路"可下载各种word版资料,持续更新中! 方法技巧:矩形中画等腰三角形时,已知的 ...

  • 动点在梯形中的分类讨论

    [典型例题1] [答案解析]  动点在梯形中的分类讨论 [典型例题2] [答案解析] 更多内容见公众号:初中数学解题思路  抛物线中的梯形 [典型例题] [答案解析] 图2              ...

  • 动点问题讲解: 动点在梯形中的分类讨论

    成才路上 初中精品学习资料 104篇原创内容 公众号  动点在梯形中的分类讨论 [典型例题1] [答案解析]  动点在梯形中的分类讨论 [典型例题2] [答案解析] 更多内容见公众号:初中数学解题思路 ...

  • 动点问题: 动点在梯形中的分类讨论

    成才路上 初中精品学习资料 104篇原创内容 公众号  动点在梯形中的分类讨论 [典型例题1] [答案解析]  动点在梯形中的分类讨论 [典型例题2] [答案解析] 更多内容见公众号:初中数学解题思路 ...

  • 【高中数学的“术”与“道”】之导数中的分类讨论依据

    上次课说过,导数之所以难是因为加入了参数使得确定的函数变的不确定,因此对参数进行讨论进而确定出函数的单调区间.极值.最值.趋势图像是高考中每年必考的内容,分类讨论思想在任何专题中都可能出现,很多老师反 ...

  • 中美2+2高层战略对话| 记者连线:中美将讨论经济网络安全等议题

    中美2+2高层战略对话| 记者连线:中美将讨论经济网络安全等议题