三维点云数据集

 本文是来自四季豆豆的CSDN的博客,主要是介绍各种数据集。如有补充请大家积极留言,并且希望大家能够在阅读论文或者有推荐的论文或者开源代码,只要和点云相关,都可以留言给群主,如果有必要将会出与你推荐相关的资料。希望大家能够积极参与分享。

1

The Stanford 3D Scanning Repository(斯坦福大学的3 d扫描存储库)

链接:http://graphics.stanford.edu/data/3Dscanrep/

这应该是做点云数据最初大家用最多的数据集,其中包含最开始做配准的Bunny、Happy Buddha、Dragon等模型。

2

Sydney Urban Objects Dataset(悉尼城市目标数据集)

链接:http://www.acfr.usyd.edu.au/papers/SydneyUrbanObjectsDataset.shtml

这个数据集包含用Velodyne HDL-64E LIDAR扫描的各种常见城市道路对象,收集于澳大利亚悉尼CBD。含有631个单独的扫描物体,包括车辆、行人、广告标志和树木等。可以用来测试匹配和分类算法。

3

ASL Datasets Repository

链接:https://projects.asl.ethz.ch/datasets/doku.php?id=home

这个数据集包含的数据比较多类,由Automonous Systems Lab提供的数据,一般数据集都有对应发表的论文成果。下边只列出一些下载过,用过的。

(1)IORS2018:目标检测和匹配

(2)IJRR2012:测试点云配准算法

(3)ISER2016:可用作点云配准(有源码)

源码链接:https://github.com/ethz-asl/robust_point_cloud_registration

4

Large-Scale Point Cloud Classification Benchmark(大规模点云分类基准)

链接:http://www.semantic3d.net/

这个数据库是做大规模点云分类的,提供了一个大的自然场景标记的3D点云数据集,总计超过40亿点。涵盖了各种各样的城市场景:教堂、街道、铁路轨道、广场、村庄、足球场、城堡等等。

5

RGB-D Object Dataset(RGB-D对象数据集)

链接:http://rgbd-dataset.cs.washington.edu/index.html

RGB-D对象数据集是300个常见的家庭对象的大数据集。该数据集是使用Kinect风格的3D相机记录的,该相机以30Hz记录同步和对齐的640x480RGB和深度图像。对于每个物体,有3个视频序列,每个视频序列用安装在不同高度的照相机记录,以便从与地平线的不同角度观察物体。除了300个对象的孤立视图之外,RGB-D对象数据集还包括22个带有注释的自然场景视频序列,其中包含来自数据集的对象。这些场景覆盖了常见的室内环境,包括办公室工作区、会议室和厨房区域。

6

NYU-Depth(纽约大学深度数据集)

链接:https://cs.nyu.edu/~silberman/datasets/

这个数据集应该也是大家比较熟悉的,包括NYU-Depth V1数据集和NYU-Depth V2数据集,都是由来自各种室内场景的视频序列组成,这些视频序列由来自Microsoft Kinect的RGB和Depth摄像机记录。

NYU-Depth V1数据集包含有64种不同的室内场景、7种场景类型、108617无标记帧和2347密集标记帧以及1000多种标记类型。

NYU-Depth V2数据集包含了1449个密集标记的对齐RGB和深度图像对、来自3个城市的464个新场景,以及407024个新的无标记帧。

7

IQmulus & TerraMobilita Contest

链接:http://data.ign.fr/benchmarks/UrbanAnalysis/#

该数据库包含来自巴黎(法国)密集城市环境的3DMLS数据,由3亿点组成。在该数据库中,对整个3D点云进行分割和分类,即每个点包含一个标签和一个类。因此,对检测-分割-分类方法进行逐点评估成为可能。 这个数据库是在iQmulus和TerraMobilita项目的框架内产生的。它被法国国家制图局(IGN)开发的MLS系统“ Stereopolis II”收购。注释将由IGN的MATIS实验室手动辅助进行。

8

Oakland 3-D Point Cloud Dataset(奥克兰 )

链接:http://www.cs.cmu.edu/~vmr/datasets/oakland_3d/cvpr09/doc/

这个数据库的采集地点是在美国卡耐基梅隆大学周围,数据采集使用Navlab11,配备侧视SICK LMS激光扫描仪,用于推扫。 其中包含了完整数据集、测试集、训练集和验证集。

9

The KITTI Vision Benchmark Suite

链接:http://www.cvlibs.net/datasets/kitti/

这个数据集来自德国卡尔斯鲁厄理工学院的一个项目,其中包含了利用KIT的无人车平台采集的大量城市环境的点云数据集(KITTI),这个数据集不仅有雷达、图像、GPS、INS的数据,而且有经过人工标记的分割跟踪结果,可以用来客观的评价大范围三维建模和精细分类的效果和性能。

其中,该团队还介绍了一些相关的数据集,可以参考:

10

Robotic 3D Scan Repository

链接:http://kos.informatik.uni-osnabrueck.de/3Dscans/

这个数据集比较适合做SLAM研究,包含了大量的Riegl和Velodyne雷达数据。

以上就是文章的全部内容了,文章中涉及的资料,希望有兴趣的小伙伴可以将文章整理上传至我们的github组群中,与我们一起阅读!还未加入组群的小伙伴可以在文章末尾留下github邮箱,邀请进组群与我一起管理并分享。

(0)

相关推荐

  • 【数据集】自动驾驶都有什么测试基准?

    Nora 正踏入计算机视觉领域,大四保研生一枚~ 言有三 毕业于中国科学院,计算机视觉方向从业者,有三工作室等创始人 作者 | Nora/言有三 编辑 | Nora/言有三 自动驾驶是现在非常活跃的领 ...

  • BCI数据分享

    更多技术,第一时间送达 2003年脑电竞赛数据集(第二届) http://www.bbci.de/competition/ii/#datasets 2005年脑电竞赛数据集(第三届) http://w ...

  • 3D目标检测/点云/遥感数据集汇总

    重磅干货,第一时间送达 作者丨Belouga- 来源丨https://blog.csdn.net/weixin_44330777/article/details/109456866 编辑丨极市平台 本 ...

  • 23个优秀的机器学习训练公共数据集

    以下是这 23 个公共数据集: 帕尔默企鹅数据集 共享单车需求数据集 葡萄酒分类数据集 波士顿住房数据集 电离层数据集 Fashion MNIST 数据集 猫与狗数据集 威斯康星州乳腺癌(诊断)数据集 ...

  • FatNet:一个用于三维点云处理的特征关注网络

    点击上方"深度学习爱好者",选择加"星标"或"置顶" 重磅干货,第一时间送达 小黑导读 论文是学术研究的精华和未来发展的明灯.小黑决心每天为 ...

  • 【系列文章】面向自动驾驶的三维点云处理与学习(2)

    标题:3D Point Cloud Processing and Learning for Autonomous Driving 作者:Siheng Chen, Baoan Liu, Chen Fen ...

  • 快速精确的体素GICP三维点云配准算法

    标题:Voxelized GICP for Fast and Accurate 3D Point Cloud Registration 作者:Kenji Koide, Masashi Yokozuka ...

  • 三维点云语义分割总览

    标题:三维点云语义分割总览 作者:吉祥街 欢迎各位加入免费知识星球,获取PDF文档,欢迎转发朋友圈,分享快乐. 希望有更多的小伙伴能够加入我们,一起开启论文阅读,相互分享的微信群.参与和分享的方式:d ...

  • 三维点云分割综述(下)

    标题:三维点云分割综述(下) 作者:Yuxing Xie, Jiaojiao Tian 翻译:闫守志 排版:particle 欢迎各位加入免费知识星球,获取PDF文档,欢迎转发朋友圈,分享快乐. 这是 ...

  • 三维点云分割综述(中)

    标题:三维点云分割综述(中) 作者:Yuxing Xie, Jiaojiao Tian 排版:particle 欢迎各位加入免费知识星球,获取PDF文档,欢迎转发朋友圈,分享快乐. 这是一篇综述性论文 ...

  • 三维点云分割综述(上)

    标题:三维点云分割综述(上) 排版:particle 欢迎各位加入免费知识星球,获取PDF文档,欢迎转发朋友圈,分享快乐. 这是一篇综述性论文,以下只做概述性介绍,介绍文章已共享在微信群和免费知识星球 ...

  • 【开源方案共享】三维点云快速分割算法

    标题:Fast 3D point cloudsegmentation using supervoxels with geometry and color for3D scene understandi ...

  • 【点云论文速读】RandLA-Net:大场景三维点云语义分割新框架

    标题:RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds 作者:Qingyong Hu, Bo Yang , ...