360°详解去耦电容,真正的理解及在真正工程中的使用!

目录

  • 一. 什么是去耦电容,为什么要去耦
    • 1.简介
    • 2.分析
  • 二. 去耦电容的选用
    • 1.问题
    • 2.分析
  • 三. 去耦电容的PCB布局布线
    • 1.原理
    • 2. 实例
    • 3.总结

一. 什么是去耦电容,为什么要去耦

1.简介

去耦(decoupling)电容也称退耦电容,一般都安置在元件附近的电源处,用来滤除高频噪声,使电压稳定干净,保证元件的正常工作。


2.分析

对于一个电路系统来说,一般有多个负载,这些负载的供电都来自于同一个电源

理想情况下,对于某个负载,电源应该是这样子的

但是电路板上各个负载的工作都要动态地吸收电流,造成的供电电压的不稳,变成了下面这样子

也就是在5V的DC上叠加了各种高频率的噪声,这些噪声是由于器件对供电电流的需求导致的电压波动,可以看成是在DC 5V上“耦和”了由于器件工作带来的AC噪声。
这样耦和了AC的DC供电电压不仅会影响本负载区域内的电路的工作,也会影响到其它连接在同一个VCC上的其它负载的工作,有可能导致那些负载的电路工作出现问题。

解决的方法就是在电源两端并上一个小容量电容

从电源上看,没有去耦电容的时候如左侧的波形,加上了去耦电容之后变成了右侧的样子,供电电压的波形变得干净了,我们称该电容的作用是去掉了耦和在干净的DC上的噪声,所以该电容被称之为去耦电容,当然也可以被称之为旁路(Bypass)电容,因为该电容将DC上耦和的噪声给旁路到地上去了,只留下干净的DC给后续的电路供电。

在整个系统每个负载都加一个去耦电容

至于电源输入端,也要加上电容去耦做输入滤波,弥补负载的滤波指数不够的情况

二. 去耦电容的选用

1.问题

了解了什么是去耦电容后,那么问题来了:

  • 究竟需要多大容量的电容才能达到去耦的效果?

  • 这么多不同种类的电容选用哪种电容合适呢?

  • 为什么在很多电路上看到针对一个电源管脚会有多个容量大小不同、类型也不相同的电容一起工作呢?


2.分析

在一个芯片(比如FPGA/MCU)的电源管脚上需要多个不同容值、不同类型的电容并联达到较好的去耦效果

我们用来去耦的电容器(不论是哪一种)用于在电源线上的瞬态干扰期间快速提供电流,它们都不只有“电容”一个属性,还有两个阻碍电流流动的部分:电阻(ESR) - 无论频率如何都呈现固定阻抗; 电感(ESL)- 随着频率的增加其阻抗也变得更高。而这三部分的值与电容的类型、容值、封装都有很大的关系。

作为最常用的去耦神器 - 陶瓷电容具有很低的ESR和ESL(它们也很便宜),其次是钽电容,提供适中的ESR和ESL,但相对有较高的电容/体积比,因此它们用于更高值的旁路电容,用于补偿电源线上的低频变化。对于陶瓷和钽电容,较大的封装通常意味着较高的ESL。

下图显示了0.1μF,封装为0603的陶瓷电容器的阻抗,该电容器具有850pH的ESL和50mΩ的ESR:

正如前面讨论的,去耦电容的作用就是平滑掉高频变动的纹波电流,理想的电容器可以很容易地实现这一点,因为电容器的阻抗随着频率的增加而降低。 但由于ESL的存在,在某个频率下阻抗实际上随频率开始上升,这个频率点又被称为自谐振频率点。 我们再对比一下1μF的钽电容器,它有2200pH的ESL和1.5Ω的ESR。

由于其较高的电容值,钽电容器的阻抗在开始阶段低于陶瓷的阻抗,但是较高的ESR和ESL的影响导致阻抗在100kHz附近变平,在1MHz-10MHz高于陶瓷电容的阻抗,在10MHz附近高出陶瓷的阻抗10倍。设想一下,如果电路中的噪声频率是在10MHz左右,即使钽具有更高的电容,也不如放置一颗0.1μF的陶瓷电容更有效。 如果我们要旁路掉更高频率的噪声,即使这个陶瓷电容也会存在太大的阻抗,我们就需要更低的ESL,也就是更小的封装。

下图左侧表明两个同样是0603封装的电容并不改变其对高频噪声的去偶性能,只是相当于去耦电容的容量为二者的和而已,后面看到这个容量对旁路噪声的效果其实没有什么差别;而下图的右侧,一个0.1μF封装为0603的电容和100pF封装为0402的电容并联在一起,就可以覆盖更宽的高频范围,能够对两个频点的噪声进行去偶。

回到本篇文章第一个图,在同一个电源管脚并联了三个去耦电容:

  • 4.7μF的钽电容,对比较低频率的噪声滤除比较有效;
  • 0.1μF、0603的陶瓷电容,对1-50MHz区域的噪声滤除效果比钽电容有效;
  • 0.001μF、0402的陶瓷电容,对于50MHz以上的高频噪声滤除比较有效;

具体的噪声频段可以通过电路分析(时钟频率)以及测量进行确定,由此需要选用相应类型、相应封装的电容进行去耦。多数的情况下我们用0.1μF陶瓷电容搭配一个钽电容,就足以满足系统对电源噪声的去耦效果。


所以,不同类型,不同容量,不同封装的电容,去耦的有效频率段也是不同的

  • 陶瓷电容相对与电解电容,最低的等效阻抗的频率点更高
  • 容量越小的电容,最低的等效阻抗的频率点更高
  • 封装越小的电容,最低的等效阻抗的频率点更高

三. 去耦电容的PCB布局布线

1.原理

先看一个很形象的动图,直观体会一下一个电容放置位置不同起到的作用有多大的差异。

这张动图传递了如下的信息:

  • 在电源管脚上放置一个104(0.1μF)的电容能够有效抑制电源上的噪声,也就是能够对电源噪声去耦;

  • “电源 – 去耦电容 – 地”三点一线的距离越近,则去耦的效果越好;

  • 相同材料的电容,即便电容容量减少为1/10,去耦的效果并不会有什么明显变化,我们对于高频去耦用同样封装的器件,容值为0.01μF、0.1μF、1μF效果相差不大;

  • 同样容值,贴片(SMD)封装的电容比穿孔的电容效果更好,原因就是穿孔电容的管脚等效的电感要大很多,影响了去耦的效果;

  • 电源平面和地平面的使用,一方面可以让三点一线的路径更短,而且两个平面相当于一个大电容,也起到了去耦的作用


2. 实例

来看具体的实例

在常用单片机stm32f103c8t6最小系统中,常常有这样四个去耦电容,分别对应芯片的四对供电引脚
而在PCB中,这四个电容(图中白色框框中)在摆放合理的情况下越靠近mcu越好


而在多电容去耦(对电源稳定要求极为苛刻的电路中),比如GSM的电源,需要多个不同容量/种类的电容

对应下面红框框出的6+1个电容,其中越小的电容应当越靠近GSM的电源脚,比如C24是8.2pF,离GSM最近,C19是100nf,离GSM较远,最远的则是容量最大的330uf的钽电容


3.总结

下面的图是去耦电容通过过孔与地进行连通的方法比较,从最左侧的效果最差依次编号,直到最右侧效果最佳,当然具体采用那种方式还要取决于其它一些因素,综合考虑后做一个折衷。

下图是一个实际电子产品系统的供电分布网络,为了强调噪声的起源(最左侧),把电源模块(VRM)放到了最右侧。PCB上的走线、过孔、相关的器件引脚等都会产生寄生电阻、电感等,在图中以R+L的方式等效表达出来。在这个图中可以看出针对IC器件内部(Die)、针对整个IC器件(Package)、针对某一个功能模块中的电路单元都有相应的去耦电容,最左侧(靠近内核)采用频率响应很高的小容值、小封装的陶瓷电容,到右侧则是低频率、容量比较大的电解电容。

总之一句话:去耦电容的PCB布局摆放原则是最小化电阻,最小化电感
(部分参考自电子开发学习.)

(0)

相关推荐

  • 旁路电容在实际应用中如何选型

    对于一个实际的电路系统, 我们如何正确选取合适的电容呢? 我们以一个实际例子来说明, 假设电路中有 50 个驱动缓冲器同时开关输出, 边沿速度1ns,负载 30pF,电压 2.5 伏,允许波动范围为+ ...

  • 电路板芯片管脚为什么是放0.1uF电容,...

    电路板芯片管脚为什么是放0.1uF电容,有些嘛放0.01uF电容?有什么讲究 电子工程师都知道,一般电路板所有芯片电源管脚都会放一个0.1uF电容或者是0.01uF电容.它是为了滤波作用,为了让电源稳 ...

  • 接地和去耦

    通常,大学里是没有专门讲授PCB接地和去耦基础知识的课程,如果您知道哪里有,请务必在评论区告诉我们! 这方面知识的掌握很可能来自实验室的经验,或者同行.前辈的分享.一般情况下,由于时间限制,绝大部分电 ...

  • 一文搞懂0.1UF和10UF电容并联使用技巧

    干货福利,第一时间送达! 摘要:搞电子的不知道小伙伴有没有被问到过,芯片附近放置的电容是多少?当你回答说是0.1uF,当你心里暗自庆幸还好自己知道的时候,面试官突然又问道为什么选取0.1uF?想必此时 ...

  • 理解输出电压纹波和噪声:输出电压纹波来源和抑制

    医疗设备.测试测量仪器等很多应用对电源的纹波和噪声极其敏感.理解输出电压纹波和噪声的产生机制以及测量技术是优化改进电路性能的基础. 第一部分:输出电压纹波 以Buck电路为例,由于寄生参数的影响,实际 ...

  • 芯片供电引脚为什么要放一个104电容?

    很多时候,我们都会看到芯片引脚旁边总会放一颗104小电容.这颗电容叫高频旁路电容,一般也叫去耦电容.作用是滤除IC供电电源中的高频谐波,降低电源中的杂波对芯片的干扰. 首先来看看电容,电容的作用简单的 ...

  • ESR、ESL如何影响电容?

    ESR→等效串联电阻, 在要求极其苛刻情况下会把两个电容并联以减小ESR. ESL→等效串联电感. ESL主要影响的是电容的高频特性. 当信号的频率高到一定程度, 这个L的阻抗会变得不可忽略, 当频率 ...

  • 三端子电容好在哪?什么是三端子电容?

    硬件工程师看海 54篇原创内容 公众号 电容分为电解电容,陶瓷电容,钽电容等.陶瓷电容在移动智能产品中使用广泛,其中又分为三端子电容和普通电容. 人们常说三端子电容高频特性好,那么作为一名硬件工程师, ...

  • 总结:去耦电容的有效使用方法

    去耦电容有效使用方法的要点大致可以分为以下两种.另外,还有其他几点需要注意. 1:使用多个去耦电容 去耦电容的有效使用方法之一是用多个(而非1个)电容进行去耦.使用多个电容时,使用相同容值的电容时和交 ...

  • 怎么分清滤波电容、去耦电容、旁路电容?其实并不难~

    电容种类繁杂,但无论再怎么分类,其基本原理都是利用电容对交变信号呈低阻状态.交变电流的频率f越高,电容的阻抗就越低.旁路电容起的主要作用是给交流信号提供低阻抗的通路:去耦电容的主要功能是提供一个局部的 ...

  • 同样容量不同材质的去耦电容效果一样吗

    同样容量不同材质的去耦电容效果一样吗

  • 滤波电容是怎么滤除噪声的,旁路电容和去耦电容有什么区别?

    滤波电容是怎么滤除噪声的,旁路电容和去耦电容有什么区别?

  • 关于滤波电容、去耦电容、旁路电容作用及其原理

    从电路来说,总是存在驱动的源和被驱动的负载.如果负载电容比较大,驱动电路要把电容充电.放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电 ...

  • 电子元器件家庭中的滤波电容、去耦电容和旁路电容,如何辨别?

    旁路电容.滤波电容.去耦电容三种叫法的电容,其实都是滤波的功能,只是应用在不同的电路中,叫法和用法不一样. a.旁路电容主要对输入信号进行滤波处理:功能主要是要减小电路里面纹波的幅值,从而保证电路正常 ...

  • 几分钟给你讲清楚什么是耦合、旁路、去耦电容,记住一句话就行

    几分钟给你讲清楚什么是耦合、旁路、去耦电容,记住一句话就行

  • 旁路电容与去耦电容有什么联系与区别?

    摆在你面前的就是这么一个看似简单的问题: 旁路(电容)与去耦(电容)有什么联系与区别? 不客气地说,大多数读者都无法明确说出准确的答案,连很多所谓的资深工程师也不能幸免. 于是乎,好像早就约定好的一样 ...

  • 为什么集成电路IC需要自己的去耦电容?答案在这里

    为了保证高频输入和输出,每个集成电路(IC)都必须使用电容将各电源引脚连接到器件上的地,原因有二:防止噪声影响其本身的性能以及防止它传输噪声而影响其它电路的性能. 电力线就像天线一样,可能会拾取其它地 ...

  • 去耦电容 与 旁路电容 的区别

    旁路电容是把电源或者输入信号中的交流分量的干扰作为滤除对象. 有了旁路电容,将电源5V中的交流分量--波动进行滤除.将蓝色波形变成粉红色波形.一般来说,靠近电源放置. 去耦电容是芯片的电源管脚,由于自 ...