把tcga大计划的CNS级别文章标题画一个词云
TCGA计划官方文章在:https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga/publications
全部的标题的英文很容易提取和整理,如下:
Comprehensive genomic characterization defines human glioblastoma genes and core pathways
Integrated genomic analyses of ovarian carcinoma
Comprehensive molecular characterization of human colon and rectal cancer
Comprehensive molecular portraits of human breast tumours
Comprehensive genomic characterization of squamous cell lung cancers
Integrated genomic characterization of endometrial carcinoma
Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia
Comprehensive molecular characterization of clear cell renal cell carcinoma
The Cancer Genome Atlas Pan-Cancer analysis project
The somatic genomic landscape of glioblastoma
Comprehensive molecular characterization of urothelial bladder carcinoma
Comprehensive molecular profiling of lung adenocarcinoma
Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin
The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma
Comprehensive molecular characterization of gastric adenocarcinoma
Integrated genomic characterization of papillary thyroid carcinoma
Comprehensive genomic characterization of head and neck squamous cell carcinomas
Genomic Classification of Cutaneous Melanoma
Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas
Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer
The Molecular Taxonomy of Primary Prostate Cancer
Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma
Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma
Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas
Integrated genomic characterization of oesophageal carcinoma
Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma
Integrated Molecular Characterization of Uterine Carcinosarcoma
Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles
Integrated genomic and molecular characterization of cervical cancer
Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma
Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma
Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma
Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer
Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas
The Integrated Genomic Landscape of Thymic Epithelial Tumors
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines
Molecular Characterization and Clinical Relevance of Metabolic Expression Subtypes in Human Cancers
Systematic Analysis of Splice-Site-Creating Mutations in Cancer
Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types
The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas
Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas
Driver Fusions and Their Implications in the Development and Treatment of Human Cancers
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types
SnapShot: TCGA-Analyzed Tumors
The Cancer Genome Atlas: Creating Lasting Value beyond Its Data
Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation
Oncogenic Signaling Pathways in The Cancer Genome Atlas
Perspective on Oncogenic Processes at the End of the Beginning of Cancer Genomics
Comprehensive Characterization of Cancer Driver Genes and Mutations
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
Pathogenic Germline Variants in 10,389 Adult Cancers
A Pan-Cancer Analysis of Enhancer Expression in Nearly 9000 Patient Samples
Genomic and Functional Approaches to Understanding Cancer Aneuploidy
A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers
Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas
lncRNA Epigenetic Landscape Analysis Identifies EPIC1 as an Oncogenic lncRNA that Interacts with MYC and Promotes Cell-Cycle Progression in Cancer
The Immune Landscape of Cancer
Integrated Molecular Characterization of Testicular Germ Cell Tumors
Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 Patients
A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF-β Superfamily
Integrative Molecular Characterization of Malignant Pleural Mesothelioma
The chromatin accessibility landscape of primary human cancers
Comprehensive Molecular Characterization of the Hippo Signaling Pathway in Cancer
Before and After: Comparison of Legacy and Harmonized TCGA Genomic Data Commons’ Data
Comprehensive Analysis of Genetic Ancestry and Its Molecular Correlates in Cancer
简单的使用bing搜索一下关键词:word clound in r ,就可以找到解决方案,第一个链接就是:http://www.sthda.com/english/wiki/text-mining-and-word-cloud-fundamentals-in-r-5-simple-steps-you-should-know,代码分成5个步骤。
Step 1: Create a text file Step 2 : Install and load the required packages Step 3 : Text mining Step 4 : Build a term-document matrix Step 5 : Generate the Word cloud
一般来说,会R基础的朋友们很容易看懂,如果你还不会R语言,建议看:
把R的知识点路线图搞定,如下:
了解常量和变量概念 加减乘除等运算(计算器) 多种数据类型(数值,字符,逻辑,因子) 多种数据结构(向量,矩阵,数组,数据框,列表) 文件读取和写出 简单统计可视化 无限量函数学习
核心代码就是wordcloud函数,但是这个wordcloud函数要求的输入数据就需要认真做出来。
# 安装R包相信无需再强调了
library("tm")
library("SnowballC")
library("wordcloud")
library("RColorBrewer")
# 这里我们直接读取自己电脑剪切的数据即可
# 运行下面这句代码的同时,需要保证你已经复制了前面我们整理好的文章标题哦!
text=readLines(pipe("pbpaste"))
# 好像这里Mac系统跟Windows系统稍微不一样,大家需要自行把握
# Load the data as a corpus
docs <- Corpus(VectorSource(text))
toSpace <- content_transformer(function (x , pattern ) gsub(pattern, " ", x))
docs <- tm_map(docs, toSpace, "/")
docs <- tm_map(docs, toSpace, "@")
docs <- tm_map(docs, toSpace, "\\|")
# Convert the text to lower case
docs <- tm_map(docs, content_transformer(tolower))
# Remove numbers
docs <- tm_map(docs, removeNumbers)
# Remove english common stopwords
docs <- tm_map(docs, removeWords, stopwords("english"))
# Remove your own stop word
# specify your stopwords as a character vector
docs <- tm_map(docs, removeWords, c("blabla1", "blabla2"))
# Remove punctuations
docs <- tm_map(docs, removePunctuation)
# Eliminate extra white spaces
docs <- tm_map(docs, stripWhitespace)
# Text stemming
# docs <- tm_map(docs, stemDocument)
dtm <- TermDocumentMatrix(docs)
m <- as.matrix(dtm)
v <- sort(rowSums(m),decreasing=TRUE)
d <- data.frame(word = names(v),freq=v)
head(d, 10)
set.seed(1234)
wordcloud(words = d$word, freq = d$freq, min.freq = 1,
max.words=200, random.order=FALSE, rot.per=0.35,
colors=brewer.pal(8, "Dark2"))
词云绘图结果每次布局都不一样哦,如下所示:
其实就是把词频给可视化了一下:
> head(d, 10)
word freq
1 characterization 25
2 molecular 25
3 genomic 24
4 cancer 23
5 comprehensive 22
6 analysis 13
7 integrated 12
8 carcinoma 11
9 cell 8
10 genome 8
出现次数很多的单词,在词云就显示大一点,仅此而已。
在三年前我就整理并且制作了TCGA肿瘤数据库知识图谱视频教程,一年半前免费公布在生信技能树的B站,现在勉勉强强也快有两万的观看量。
视频地址:https://www.bilibili.com/video/av49363776
代码地址:https://github.com/jmzeng1314/tcga_example
阅读量如下:
视频目录是:
P1-TCGA-101-课程介绍-需要哪些背景知识
P2-TCGA-102-课程导读-如何使用我的github代码
P3-TCGA-103--TCGA数据库大有作用-不仅仅是灌水
P4-TCGA-201-背景介绍及网页工具大全
P5-TCGA-202-其它数据库介绍
P6-TCGA-203-使用Xena网页工具
P7-TCGA-204-使用firehose网页工具
P8-TCGA-205-文章规律讲解
P9-TCGA-301-数据下载方式导言
P10-TCGA-302-GDC下载数据实战
P11-TCGA-303-GDC数据整理
P12-TCGA-304-GDC下载数据续集
P13-TCGA-305-R-TCGA包下载数据及数据提取
P14-TCGA-306-使用GDC和firehose下载-TCGA的胃癌的甲基化信息数据
P15-TCGA-307-使用GDC和Xena下载RNA-Seq的表达矩阵并且比较
我们生信技能树团队优秀R语言讲师《小洁》也学完了我的全套视频,在她自己的理解的基础上面,也给大家奉献了一套笔记:
小洁的笔记
细数下来,写了17篇TCGA相关的笔记,现对其进行完整梳理,一篇年度精品推文横空出世。再次重申:本系列是我的TCGA
学习记录,跟着生信技能树B站课程学的,已获得授权。课程链接:https://www.bilibili.com/video/av49363776
一、数据下载
1.官方工具GDC
需要去官网下载对应系统版本的GDC软件,存放在工作目录下。
关于这个工具前后写了三篇:
(1)GDC数据下载
(2)GDC数据整理
(3)GDC数据整理续集
这个方法需要扎实的的linux命令行和R语言基础,仅仅是理解代码,也是需要花费一些时间的。
2.R包TCGA-biolinks
R包TCGAbiolinks下载数据
这是一个完全基于R语言的流程,下载的是最新的数据,其实还是基于GDC,更加集成化,操作简单很多,除了参数研究比较费时间,没有发现什么缺点。
3.R包RTCGA
使用RTCGA包获取数据
这是一个数据库式的包,把所有数据都包装进去了,导致包很大,不是最新的数据,但最简单。
总结一下这三种方法,都是分别下载表达矩阵和meta信息,但由于有的病人既有肿瘤样本,又有正常样本,导致他们并非是一一对应的关系,需要一定的R语言技巧。
二.差异分析
TCGA(转录组)差异分析三大R包及其结果对比
使用转录组三大R包deseq2,limma和edgeR分别进行差异分析
三.生存分析
两种方法批量做TCGA生存分析
单个基因的生存分析可视化是很简单的,有非常好的R包可用,画出来的图要颜值有颜值,要内涵有内涵。
四.生存模型构建
课程中共使用了四种算法构建模型:
cox(可做单因素和多因素)
TCGA的cox模型构建和风险森林图lasso回归
用lasso回归构建生存模型+ROC曲线绘制随机森林
听起来很霸气用起来并不难的随机森林支持向量机
听起来很霸气用起来并不难的 支持向量机
不管用了那种算法,核心都只是几句代码.