一次函数背景下的平行四边形存在性问题
在解决一次函数背景下的平行四边形的存在性问题,我们需要首先先厘清平行四边形的性质:
1、平行四边形的对边平行且相等;
2、平行四边形的对角线互相平分。
对于平行四边形的存在性问题,不难发现,一般情况下,动点最多也就两个,不管是在坐标轴上、还是在直线、甚至在今后所学的抛物线上,总是能够用字母表示出动点的坐标。只要能够准确分类讨论,标对了点的坐标,接下来只要计算正确即可了。
赞 (0)
在解决一次函数背景下的平行四边形的存在性问题,我们需要首先先厘清平行四边形的性质:
1、平行四边形的对边平行且相等;
2、平行四边形的对角线互相平分。
对于平行四边形的存在性问题,不难发现,一般情况下,动点最多也就两个,不管是在坐标轴上、还是在直线、甚至在今后所学的抛物线上,总是能够用字母表示出动点的坐标。只要能够准确分类讨论,标对了点的坐标,接下来只要计算正确即可了。