遵义市南白中学2020-2021学年高二上期模拟试题(理数15含参考答案)
遵义市南白中学2020-2021学年高二上期模拟试题
理科数学(15)
第Ⅰ卷(选择题,共60分)
一、
选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.如右图,直线
的倾斜角分别为
,则有 ( )
A. |
B. |
C. |
D. |
2.在空间直角坐标系中,点
关于
轴的对称点的坐标是( )
A.
B.
C.
D.
3.已知
是椭圆的两个焦点,过
的直线
交椭圆于
两点,若
的周长为8,则椭圆方程为( )
A.
B.
C.
D.
4.圆
的圆心到直线
的距离为 ( )
A.
B.
C.
D.
5.已知点
,
关于直线
对称,则直线
的方程是( )
A.
B.
C.
D.
6.已知
分别为直线
上任意一点,则
的最小值为( )
A.
B.
C.
D.
7.已知圆
:
,圆
:
,则圆
和圆
的公切线有( )
A.
条 B.
条 C.
条 D.
条
8.过点
且与原点
的距离最大的直线
的方程为( )
A.
B.
C.
D.
9.
10.已知圆
,过原点作圆C的弦
,则
的中点
的轨迹方程为 ( )
A.
B.
C.
D.
11.方程
所表示的曲线图形是( )
第Ⅱ卷(非选择题,共90分)
二、填空题(本大题共4小题,每小题5分,共20分)
13.直线
恒过定点为______________.
14.已知
是椭圆
上的点,则点
到椭圆的一个焦点的最短距离为_______.
15.已知圆
和圆
交于
两点,则
的垂直平分线的方程为___________________.
16.已知
是直线
上的动点,
是圆
的 两条切线(
为切点),则四边形
面积的最小值为_______________.
三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分10分)
已知直线
经过两条直线
和
的交点,求分别满足下列条件的直线
的方程:
(1) 垂直于直线
;
(2) 平行于直线
.
18.(本小题满分12分)
求与x轴相切,圆心在直线3x-y=0上,且被直线x-y=0截得的弦长为
的圆的方程.
19.(本小题满分12分)
已知
中顶点
,
边上的中线
所在的直线方程为
,
的平分线
所在的直线方程为
.
(1)求顶点
的坐标;
(2)求直线
的方程.
20.(本小题满分12分)
已知圆
.
(1) 若圆
的切线在
轴和
轴上的截距相等,且截距不为零,求此切线的方程;
(2) 若从圆
外一点
向该圆引切线
(
为切点),求弦长
的大小.
21.(本小题满分12分)
已知椭圆
的离心率为
,短轴的一个端点到椭圆的一个焦点的距离为
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
交于不同的
两点,求
(
为坐标原点)的面积.