郭新华——一道奥地利数学竞赛不等式的证明 2024-06-20 05:54:18 郭新华老师近期文章 2021-01-27 CRUX问题4593的解答2021-01-15 代换法解答两道题2021-01-12 2020年IMO荷兰国家代表队选拔几何题2021-01-09 CRUX题4591的证明2021-01-06 2020年泰国MO第二天题6的证明2021-01-05 2020年泰国MO第一天题4的证明2021-01-04 2019年拉普拉塔河MO第三级题1的证明2021-01-02 2020年阿根廷MO第3题的证明2020-12-15 2020年捷克斯洛伐克MO第三轮A组题2的证明2020-12-10 《数学通报》2020年11月号问题2571的证明2020-12-07 一道方程组的换元解答2020-12-03 一道沙特阿拉伯MO不等式的证明2020-11-23 2020巴西EGMO﹨Cono Sur代表队选拔考试第2题的证明2020-11-20 《数学教学》2020年第10期问题1101的证明2020-11-10 2020年墨西哥MO不等式的证明2020-11-04 《数学通讯》2020年第10期问题466的解答2020-10-24 2016年立陶宛MO不等式的简证2020-10-22 2020年乌克兰雅辛斯基几何竞赛10-11年级提高组第2题的证明2020-10-21 2020年乌克兰雅辛斯基几何竞赛题提高组第5题的证明2020-09-17 2019年巴尔干MO不等式的证明2020-08-26 Zharullayevdastan 不等式问题1的证明 赞 (0) 相关推荐 高中数学——竞赛中不等式高级必备(值得一... 高中数学--竞赛中不等式高级必备(值得一看) 伯努利不等式.均值不等式.幂均不等式.柯西不等式.切比雪夫不等式.排序不等式. 琴生不等式.波波维奇亚不等式.加权不等式.赫尔德不等.闵可夫斯基不等式.牛 ... 高中数学竞赛必备各类不等式:1、伯努利不... 高中数学竞赛必备各类不等式: 1.伯努利不等式 2.均值不等式 3.幂均不等式 4.柯西不等式 5.切比雪夫不等式 6.排序不等式 7.琴生不等式 爱拼才能赢!印度数学竞赛题,不等式一例 爱拼才能赢!印度数学竞赛题,不等式一例 郭新华——2019年波黑MO不等式的证明 浙大优培专集 [往届活动回顾]第一届高中数学奥林匹克教练研习班(文末回复关键词提取课程讲义) [会议资料]边红平老师手写稿:首届高中奥数(文末回复关键词提取文件) [会议资料]萧振纲老师手写稿:首届高 ... 郭新华——2021年塞浦路斯MO不等式的证明 点击底端"阅读原文",进入"许康华竞赛优学推荐浙大出版社优秀图书". 近期热文 2021-05-28 关于举办第十八届中国东南地区数学夏令营("洪 ... 郭新华——2020年波兰MO不等式的证明 郭新华老师近期文章 2021-03-02 2021年科索沃MO不等式的证明 2021-02-21 2021年日本EGMOTST第一题的三角法解答 2021-02-04 2020年圣诞节MO ... 郭新华——2021年科索沃MO不等式的证明 郭新华老师近期文章 2021-02-21 2021年日本EGMOTST第一题的三角法解答 2021-02-04 2020年圣诞节MO不等式的证明 2021-02-03 2021年圣诞节MO ... 郭新华——2021年圣诞节MO不等式的证明 郭新华老师近期文章 2021-01-31 分角公式证明苏林老师的几何题 2021-01-30 一道奥地利数学竞赛不等式的证明 2021-01-27 CRUX问题4593的解答 2021-0 ... 郭新华——2020年墨西哥MO不等式的证明 103282699@qq.com,1090841758@qq.com 许康华老师联系方式:微信(xkh3122):QQ(1090841758) 注意: 许康华老师的微信号已经从xkh3121升级到新版 ... 郭刚明——2017马其顿数学竞赛不等式 陈嘉昊主编,清华.北大自主招生十年真题详解 清北真题专集 2020-07-19 2010年北约自主招生测试(数学学科) 2020-07-19 2011年北约自主招生测试(数学学科) 2020- ... 每日一题349:一道大学生数学竞赛连乘通项常值级数敛散性的判定及推广证明 练习题 [注]如果公式显示不全,请在公式上左右滑动显示! 练习349:(1) 研究级数 的绝对收敛性. (2) 设 ,证明以下两个级数都绝对收敛: (3) 证明以下两个级数都绝对收敛: 先自己思考,动 ... 高中数学竞赛不等式总结 高中数学竞赛不等式总结