【小学数学】逻辑推理问题的三种常用解题方法,快教孩子学起来!
在日常生活中,有些问题常常要求我们主要通过分析和推理,而不是计算得出正确的结论。
这类判断、推理问题,就叫做逻辑推理问题,简称逻辑问题。
这类题目与我们学过的数学题目有很大不同,题中往往没有数字和图形,也不用我们学过的数学计算方法,而是根据已知条件,分析推理,得到答案。
逻辑推理解题方法之列表法
例题讲解
【例1】
小王、小张和小李一位是工人,一位是农民,一位是教师,现在只知道:小李比教师年龄大;小王与农民不同岁;农民比小张年龄小。问:谁是工人?谁是农民?谁是教师?
分析与解
由题目条件可以知道:小李不是教师,小王不是农民,小张不是农民。
由此得到左下表。表格中打“√”表示肯定,打“×”表示否定。
因为上表中,任一行、任一列只能有一个“√”,其余是“×”,所以小李是农民,于是得到右上表。
因为农民小李比小张年龄小,又小李比教师年龄大,所以小张比教师年龄大,即小张不是教师。因此得到左下表,从而得到右下表,即小张是工人,小李是农民,小王是教师。
【例2】
刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛。事先规定:兄妹二人不许搭伴。
第一盘:刘刚和小丽对李强和小英;
第二盘:李强和小红对刘刚和马辉的妹妹。
问:三个男孩的妹妹分别是谁?
分析与解
因为兄妹二人不许搭伴,所以题目条件表明:刘刚与小丽、李强与小英、李强与小红都不是兄妹。
由第二盘看出,小红不是马辉的妹妹。
将这些关系画在左下表中,由左下表可得下表。
刘刚与小红、马辉与小英、李强与小丽分别是兄妹。
【例3】
甲、乙、丙每人有两个外号,人们有时以“数学博士”、“短跑健将”、“跳高冠军”、“小画家”、“大作家”和“歌唱家”称呼他们。此外:
(1)数学博士夸跳高冠军跳得高;
(2)跳高冠军和大作家常与甲一起去看电影;
(3)短跑健将请小画家画贺年卡;
(4)数学博士和小画家很要好;
(5)乙向大作家借过书;
(6)丙下象棋常赢乙和小画家。
你知道甲、乙、丙各有哪两个外号吗?
分析与解
由(2)知,甲不是跳高冠军和大作家;由(5)知,乙不是大作家;由(6)知,丙、乙都不是小画家。
由此可得到下表:
因为甲是小画家,所以由(3)(4)知甲不是短跑健将和数学博士,推知甲是歌唱家。
因为丙是大作家,所以由(2)知丙不是跳高冠军,推知乙是跳高冠军。
因为乙是跳高冠军,所以由(1)知乙不是数学博士。
将上面的结论依次填入上表,便得到下表:
所以,甲是小画家和歌唱家,乙是短跑健将和跳高冠军,丙是数学博士和大作家。
【例4】
张明、席辉和李刚在北京、上海和天津工作,他们的职业是工人、农民和教师,已知:
(1)张明不在北京工作,席辉不在上海工作;
(2)在北京工作的不是教师;
(3)在上海工作的是工人;
(4)席辉不是农民。
问:这三人各住哪里?各是什么职业?
分析与解
与前面的例题相比,这道题的关系要复杂一些,要求我们通过推理,弄清人物、工作地点、职业三者之间的关系。
三者的关系需要两两构造三个表,即人物与地点,人物与职业,地点与职业三个表。
我们先将题目条件中所给出的关系用下面的表来表示,由条件(1)得到表1,由条件(4)得到表2,由条件(2)(3)得到表3。
因为各表中,每行每列只能有一个“√”,所以表(3)可填全为表(4)。
因为席辉不在上海工作,在上海工作的是工人,所以席辉不是工人,他又不是农民,所以席辉是教师。
再由表4知,教师住在天津,即席辉住在天津。
至此,表1可填全为表5。
对照表5和表4,得到:张明住在上海是工人,席辉住在天津是教师,李刚住在北京是农民。
逻辑推理解题方法之假设法
例题讲解
【例1】
四个小朋友宝宝、星星、强强和乐乐在院子里踢足球,一阵响声,惊动了正在读书的陆老师,陆老师跑出来查看,发现一块窗户玻璃被打破了。陆老师问:“是谁打破了玻璃?”
宝宝说:“是星星无意打破的。”
星星说:“是乐乐打破的。”
乐乐说:“星星说谎。”
强强说:“反正不是我打破的。”
如果只有一个孩子说了实话,那么这个孩子是谁?是谁打破了玻璃?
分析与解
因为星星和乐乐说的正好相反,所以必是一对一错,我们可以逐一假设检验。
假设星星说得对,即玻璃窗是乐乐打破的,那么强强也说对了,这与“只有一个孩子说了实话”矛盾,所以星星说错了。
假设乐乐说对了,按题意其他孩子就都说错了。
由强强说错了,推知玻璃是强强打破的。
宝宝、星星确实都说错了。
符合题意。
所以是强强打破了玻璃。
由例1看出,用假设法解逻辑问题,就是根据题目的几种可能情况,逐一假设。
如果推出矛盾,那么假设不成立;如果推不出矛盾,那么符合题意,假设成立。
【例2】
甲、乙、丙、丁四人同时参加全国小学数学夏令营。赛前甲、乙、丙分别做了预测。
甲说:“丙第1名,我第3名。”
乙说:“我第1名,丁第4名。”
丙说:“丁第2名,我第3名。”
成绩揭晓后,发现他们每人只说对了一半,你能说出他们的名次吗?
分析与解
我们以“他们每人只说对了一半”作为前提,进行逻辑推理。
假设甲说的第一句话“丙第1名”是对的,第二句话“我第3名”是错的。
由此推知乙说的“我第1名”是错的,“丁第4名”是对的;丙说的“丁第2名”是错的,“丙第3名”是对的。
这与假设“丙第1名是对的”矛盾,所以假设不成立。
再假设甲的第二句“我第3名”是对的,那么丙说的第二句“我第3名”是错的,从而丙说的第一句话“丁第2名”是对的;由此推出乙说的“丁第4名”是错的,“我第1名”是对的。
至此可以排出名次顺序:乙第1名、丁第2名、甲第3名、丙第4名。
【例3】
甲、乙、丙、丁在谈论他们及他们的同学何伟的居住地。
甲说:“我和乙都住在北京,丙住在天津。”
乙说:“我和丁都住在上海,丙住在天津。”
丙说:“我和甲都不住在北京,何伟住在南京。”
丁说:“甲和乙都住在北京,我住在广州。”
假定他们每个人都说了两句真话,一句假话。问:不在场的何伟住在哪儿?
分析与解
因为甲、乙都说“丙住在天津,”我们可以假设这句话是假话,那么甲、乙的前两句应当都是真话,推出乙既住在北京又住在上海,矛盾。
所以假设不成立,即“丙住在天津”是真话。
因为甲的前两句话中有一句假话,而甲、丁两人的前两句话相同,所以丁的第三句话“我住在广州”是真的。
由此知乙的第二句话“丁住在上海”是假话,第一句“我住在上海”是真话;进而推知甲的第二句是假话,第一句“我住在北京”是真话;最后推知丙的第二句话是假话,第三句“何伟住在南京”是真话。
所以,何伟住在南京。
在解答逻辑问题时,有时需要将列表法与假设法结合起来。
一般是在使用列表法中,出现不可确定的几种选择时,结合假设法,分别假设检验,以确定正确的结果。
列表法与假设法结合
例题讲解
【例1】
一天,老师让小马虎把甲、乙、丙、丁、戊的作业本带回去,小马虎见到这五人后就一人给了一本,结果全发错了。现在知道:
(1)甲拿的不是乙的,也不是丁的;
(2)乙拿的不是丙的,也不是丁的;
(3)丙拿的不是乙的,也不是戊的;
(4)丁拿的不是丙的,也不是戊的;
(5)戊拿的不是丁的,也不是甲的。另外,没有两人相互拿错(例如甲拿乙的,乙拿甲的)。
问:丙拿的是谁的本?丙的本被谁拿走了?
分析与解
根据“全发错了”及条件(1)~(5),可以得到表1:
由表1看出,丁的本被丙拿了。
此时,再继续推理分析不大好下手,我们可用假设法。
由表1知,甲拿的本不是丙的就是戊的。
先假设甲拿了丙的本。
于是得到表2,表2中乙拿戊的本,戊拿乙的本。
两人相互拿错,不合题意。
再假设甲拿戊的本。于是可得表3,经检验,表3符合题意。
所以丙拿了丁的本,丙的本被戊拿了。
【例2】
甲、乙、丙、丁每人只会中、英、法、日四种语言中的两种,其中有一种语言只有一人会说。他们在一起交谈可有趣啦:
(1)乙不会说英语,当甲与丙交谈时,却请他当翻译;
(2)甲会日语,丁不会日语,但他们却能相互交谈;
(3)乙、丙、丁找不到三人都会的语言;
(4)没有人同时会日、法两种语言。
请问:甲、乙、丙、丁各会哪两种语言?
分析与解
由(1)(2)(4)可得下表,其中丙不会日语是因为甲会日语,且甲与丙交谈需要翻译。
由下表看出,甲会的另一种语言不是中文就是英语。
先假设甲会说中文。
由(2)知,丁也会中文;由(1)知丙不会中文,再由每人会两种语言,知丙会英、法语(见左下表;由(1)(4)推知乙会中文和法语;再由(3)及每人会两种语言,推知丁会英语(见右下表)。
结果符合题意。
再假设甲会说英语。
由(2)知,丁也会英语;由(1)知丙不会英语,再由每人会两种语言,知丙会中文和法语(见左下表);由(1)(4)推知,乙会中文和日语;再由(3)及每人会两种语言,推知丁会法语(见右下表)。
右下表与“有一种语言只有一人会说”矛盾。假设不成立。
所以甲会中、日语,乙会中、法语,丙会英、法语,丁会中、英语。