自动驾驶学习资料合集
王方浩学习交流请添加微信号@wfh_coding已关注883 人赞同了该文章所有资料下载见文末链接!!!请点击文末链接下载,本文皆为网上公开资料,只用作个人学习用途,如有侵权请联系删除。教学视频综合百度和优达学城合作课程(入门推荐)Apollo自动驾驶 - 百度技术学院多伦多大学自动驾驶Coursera公开课MIT自动驾驶公开课MIT自动驾驶访谈(主要是一些业界大神的分享)2. 定位iMorpheusAI的自频道-优酷视频3. SLAM【高翔】视觉SLAM十四讲视觉导航:从状态估计到运动规划 (公开课,需要注册账号)书籍1.综合《无人驾驶原理与实践》 兰州大学的自动驾驶团队,作为我开始入门无人驾驶的书籍,值得推荐《无人驾驶:人工智能如何颠覆汽车》 书比较薄,和上本类似,入门推荐《第一本无人驾驶技术书》入门推荐《自动驾驶技术概论》 北京航空航天大学和百度自动驾驶事业群组联合编写2. Planning《PLANNING ALGORITHMS》 规划算法介绍,英文版3.高精度地图和定位《视觉SLAM十四讲》高精度地图和定位需要的基础知识4. 车联网车联网白皮书(C-V2X白皮书)车联网白皮书(2018年)车联网网络安全白皮书(2017年)车联网白皮书(2017年)C-V2X业务需求演进车辆高精度定位白皮书C-V2X产业化路径和时间表研究白皮书LTE-V2X安全技术白皮书MEC与C-V2X融合 应用场景C-V2X白皮书主要介绍了V2X的架构演进和一些产业研究,对CV2X的技术方案了解非常有帮忙。资料下载见文末自动驾驶技术栈[1]这里主要对自动驾驶技术做了硬件和软件2个大类的划分,图片如果不清晰可以查看思维导图原图链接
开源项目开源项目也是学习的重要方面1.全栈Apollo - 百度的自动驾驶项目,集成了无人驾驶的各个模块,很值得推荐autoware - 名古屋大学的自动驾驶项目,最早的自动驾驶开源项目之一2. 仿真Udacity- 优达学城的自动驾驶仿真平台Carla- Intel和丰田合作的自动驾驶项目AirSim- 微软的仿真平台,还可以用于无人机lgsvl- LG的自动驾驶仿真平台数据集驾驶数据集KITTI 目前最知名的自动驾驶数据集之一,一些创业公司都会拿里面的数据进行排名比赛。Cityscapes 目标是理解街景的语义,主要是针对城市街景做语义解析。Mapillary 是一个由位于瑞典马尔默的Mapillary AB开发,用来分享含有地理标记照片的服务。其创建者想要利用众包的方式来把整个世界(不仅是街道)以照片的形式存储。comma.ai's Driving Dataset 目的是低成本的自动驾驶方案,目前是通过手机改装来做自动驾驶,开源的数据主要是行车记录仪的数据。Udacity's Driving Dataset 优达学城的自动驾驶数据集,优达学城真的是业界良心,希望国内也多点靠谱的网课。Washington DC's Lidar Data 看起来像是亚马逊的数据?Apolloscape 百度的自动驾驶数据集,有很多复杂场景的道路,同意用数据要同意很长一段声明。BDDV Berkeley的大规模自动驾驶视频数据集。Oxford RobotCar 对牛津的一部分连续的道路进行了上百次数据采集,收集到了多种天气、行人和交通情况下的数据,也有建筑和道路施工时的数据。1000小时以上。nuscenes aptiv提供的数据集,带标注,宣称是目前最大的数据集之一,资源在Amazon S3,目前被墙,后面看是否做个镜像。Waymo open dataset waymo在CVPR2020上提供的自动驾驶数据集,数据量和场景都非常完整。2. 交通标志数据集KUL Belgium Traffic Sign Dataset 比利时的一个交通标志数据集。German Traffic Sign 德国交通标注数据集 。STSD 超过20 000张带有20%标签的图像,包含3488个交通标志。LISA 超过6610帧上的7855条标注。Tsinghua-Tencent 100K 腾讯和清华合作的数据集,100000张图片,包含30000个交通标志实例。论文论文下载文末有论文打包下载地址!!!请点击文末链接下载。同时论文下载强烈推荐,感谢这个网站的作者。removing barriers in the way of science2. 自动驾驶综述Self-Driving Cars: A SurveyTowards Fully Autonomous Driving: Systems and AlgorithmsA Survey of Autonomous Driving: Common Practices and Emerging TechnologiesA Survey of Deep Learning Techniques for Autonomous Driving3. 定位下面总结了目前主流的定位方法,以及其优缺点,参考"A Survey of Autonomous Driving: Common Practices and Emerging Technologies"需要的自取
1.state-of-art定位综述A survey of the state-of-the-art localization techniques and their potentials for autonomous vehicle applications2.SLAM方法在自动驾驶领域应用综述Simultaneous localization and mapping: A survey of current trends in autonomous driving3.斯坦福DARPA比赛开山之作,主要是关于SLAM方法Map-Based Precision Vehicle Localization in Urban Environments Robust Vehicle Localization in Urban Environments Using Probabilistic Maps4.百度GNSS和点云定位融合方案Robust and Precise Vehicle Localization based on Multi-sensor Fusion in Diverse City Scenes4. 感知计算机视觉在自动驾驶应用综述Computer Vision for Autonomous Vehicles:Problems, Datasets and State-of-the-Art2. 物体识别综述Object Detection With Deep Learning: A Review50 Years of object recognition: Directions forwardDeep Learning for Generic Object Detection: A SurveyObject Detection in 20 Years: A Survey - 20193. 道路和车道识别Recent progress in road and lane detection: a survey4. 传感器融合Multisensor data fusion: A review of the state-of-the-artA Review of Data Fusion TechniquesA COMPREHENSIVE REVIEW OF THE MULTI-SENSOR DATA FUSION ARCHITECTURESA Survey of Multisensor Fusion Techniques, Architectures and Methodologies5. 多目标跟踪SIMPLE ONLINE AND REALTIME TRACKINGSIMPLE ONLINE AND REALTIME TRACKING WITH A DEEP ASSOCIATION METRICDeep Learning-based Vehicle Behaviour Prediction For Autonomous Driving Applications: A ReviewMultiple Object Tracking: A Literature ReviewDEEP LEARNING IN VIDEO MULTI-OBJECT TRACKING: A SURVEYDeep Learning for Visual Tracking: A Comprehensive SurveyLearning to Divide and Conquer for Online Multi-Target TrackingAn Experimental Survey on Correlation Filter-based Tracking5.预测A Review of Tracking, Prediction and Decision Making Methods for Autonomous DrivingHuman Motion Trajectory Prediction: A SurveyDeep Learning-based Vehicle Behaviour Prediction For Autonomous Driving Applications: A ReviewA survey on motion prediction and risk assessment for intelligent vehicles6. 规划控制综述论文A Survey of Motion Planning and ControlTechniques for Self-driving Urban VehiclesA Review of Motion Planning Techniques for Automated Vehicles2. 百度EMplanner论文Baidu Apollo EM Motion Planner7. End-to-End端到端自动驾驶End to End Learning for Self-Driving Cars - 2016 NVIDIA8.V2Xv2x测试综述A Survey of Vehicle to Everything (V2X) Testing9. DARPADARPA城市挑战赛是无人驾驶技术的鼻祖,下面是参赛的队伍发表的论文集Autonomous Driving in Urban Environments:Boss and the Urban ChallengeMotion Planning in Urban EnvironmentsJunior: Stanford in The Urban ChallengeOdin: Team VictorTango’s entry in the DUCA Perception-Driven Autonomous Urban VehicleLittle Ben: The Ben Franklin Racing Team’s Entry in the 2007 DARPA Urban ChallengeTeam Cornell’s Skynet: Robust Perception and Planning in anUrban EnvironmentA Practical Approach to Robotic Design for the DARPA Urban ChallengeTeam AnnieWAY’s Autonomous System for the DARPA Urban Challenge 2007Driving with Tentacles: Integral Structures for Sensingand MotionCaroline: An Autonomously Driving Vehicle for Urban EnvironmentsThe MIT–Cornell Collision and Why It HappenedA Perspective on Emerging Automotive Safety Applications,Derived from Lessons Learned through Participation in the DARPA Grand ChallengesTerraMax: Team Oshkosh Urban Robot参考博客1.资料合集apollo代码分析如何开始无人驾驶学习?感知物体识别论文集强化学习资料合集2.高精度地图apollo介绍之map模块(二)高精度地图制作高精度地图制作(二)高精度地图制作(三)资料分享1. 论文下载地址论文分享在百度网盘,有需要的同学可以下载学习,提取码:gbd1文件分享pan.baidu.com2. 车联网白皮书中国信通院白皮书打包下载中国信通院-研究成果-权威发布-白皮书www.caict.ac.cn
如果觉得本文对你有帮助,欢迎点赞、分享、关注3连 O(∩_∩)O~~参考^自动驾驶技术栈整理 https://zhuanlan.zhihu.com/p/113319371发布于 2019-03-06