充要条件的判断方法
充要条件是逻辑学在研究假言命题及假言推理时引出的。
假设A是条件,B是结回论,设C、D分别为答A、B所描述对象的集合,则有下列定义和推论:
(1)由A可以推出B,由B可以推出A,则A是B的充分必要条件(此时);
(2)由A可以推出B,由B不可以推出A,则A是B的充分不必要条件(此时);
(3)由A不可以推出B,由B可以推出A,则A是B的必要不充分条件(此时)。
扩展资料:
数学中:
有命题p、q,如果p推出q且q推出p,则p是q的充分必要条件,简称充要条件。
p推出q,p是q的充分条件,同时q是p的必要条件,此时p是q的子集。
例如:a、b一正一负推出ab<0,ab<0推出a、b一正一负,则a、b一正一负和ab<0互为充要条件。
简单的说就是在证p与q时,前面那个推出后面那个就是充分条件;后面那个推出前面那个就是必要条件;前面能推出后面、后面也能推出前面就是充要条件。
对于“若p则q”形式的命题,如果已知pq,那么p是q的充分条件,q是p的必要条件。
参考资料来源:百度百科- 充分必要条件
赞 (0)