周围神经损伤的修复技术和生物材料汇总

周围神经损伤是一个世界性的临床问题,它可能导致中枢神经系统(CNS)与周围器官之间的感觉神经和运动神经失去神经联系,影响患者的生活质量。治疗完全性病变的首要要求是无张力、端到端的修复。

当端到端修复为不可能时,可使用周围神经移植物或神经导管。自体移植有一定局限性,以及同种异体和异种移植有一定的缺点,如免疫反应,这迫使研究人员研究和开发替代的方法,主要是神经导管。本文介绍了各种类型的导管材料(由生物和合成聚合物制成)和设计(管状、纤维状和基质型)的信息。

介绍

周围神经损伤是影响患者生活质量的一个世界性的临床问题,中枢神经系统(CNS)由大脑和脊髓组成。另一方面,周围神经系统位于中枢神经系统之外,包括颅神经、脊神经和外周神经,这些神经传导来自中枢神经系统的脉冲。

周围神经损伤可导致中枢神经系统与周围器官之间沿感觉神经和运动神经的神经元通讯丧失。外周神经损伤通常会导致运动和感觉功能减退导致疼痛性神经病变,这对患者来说可能是灾难性的,严重影响他们的日常活动。

周围神经由神经纤维束和周围结缔组织鞘(包括血管)组成。每个单独的神经纤维和支持施万细胞的周围都有一个松散的结缔组织,即神经内膜。在结缔组织中,一束神经纤维被胶原纤维固定,形成束,束周围有一个称为神经束膜的致密结缔组织。神经干内的整个神经束完全被一种叫做神经外膜的致密不规则的结缔组织包裹,它是结缔组织鞘的最外层。

一般来说,周围神经损伤是由机械性、热性、化学性或缺血性损伤引起的,主要是由创伤性事故或一些退行性疾病引起的。损伤的严重程度决定了功能结果。周围神经损伤通常根据Seddon和sanderland分类进行评估。Seddon将损伤的严重程度分为神经失用、轴索中断和神经断裂。1951年,sanderland将其归为1-5度伤。

  • 一级损伤,相当于神经失能,轴突解剖上完整无缺,Wallerian氏变性不存在,但有部分脱髓鞘,脉冲无法传递。这些损伤在几个月内通过治疗痊愈。

  • 二级损伤中,相当于Seddon分类中的神经轴索中断,神经内膜和施万细胞完整,但轴突被切断。这些损伤可以在完整的神经内膜的帮助下再生。

  • 三级损伤,即使神经束和神经束的排列被保留,神经束内神经也被破坏。在这些情况下,纤维束内会发生纤维化,运动和感觉功能的恢复会明显延迟。

  • 四级损伤,轴突、神经内膜和神经束膜被破坏,而只有最外层的神经外膜完整。退变程度明显高于轻度损伤;因此,可能需要切除疤痕组织和手术修复神经以实现再生。

  • 五级损伤,相当于神经损伤,整个神经干被完全切断,形成疤痕。结果,神经瘤和Wallerian氏变性分别在近端和远端形成。在这种严重的损伤中,需要手术修复。

周围神经末梢的髓鞘损伤和轴突破坏等是引起末梢神经损伤的原因。远端与神经体断开,发生Wallerian氏(顺行)变性。轴突细胞骨架成分被分解,轴突碎裂。这些事件导致髓鞘破裂。

另一方面,受损神经元胞体发生一系列细胞和分子改变、逆行反应和染色质溶解,并与近端神经残端的逆行轴突变性有关。施万细胞和浸润性巨噬细胞被用于清除轴突、髓鞘和组织碎片。此外,施万细胞增殖并沿外板排列形成Büngner带,引导再生轴突芽,再生轴突起源于轴突的近端。新的轴突芽经历髓鞘化,这些再生轴突达到其目标,以达到功能恢复。轴突近端再生的理想进程为1mm/天。然而,如果轴突芽不能穿过损伤部位,就会导致神经瘤的形成,失去神经支配的肌肉纤维萎缩。

神经损伤的治疗策略

虽然周围神经在损伤后有再生的能力,但这种自发的神经修复可能不足以实现适当的功能恢复。神经间隙的长度、损伤与修复之间的时间以及患者的年龄是周围神经损伤修复中需要考虑的重要参数。完全性病变的主要治疗方法是通过神经外膜缝合术或神经组束缝合术,对神经残端进行无张力的端到端的修复。如果出现明显的神经间隙形成,无法进行端到端修复,则需要周围神经移植物或神经导管作为穿过神经残端之间的桥梁,并支持轴突再生。

周围神经移植

自体移植

最广泛使用的神经修复策略,被认为是“黄金标准”,用于弥补神经间隙的神经,取自病人自己身体的其他地方。自体神经移植已被广泛研究,并已报道其优于张力下神经外膜缝合。

自体神经移植为轴突从近端到远端的轴突进展提供了结构上的指导。腓肠神经、浅表皮神经、前臂外侧和内侧皮神经等功能不太重要的神经作为自体神经组织的供体。然而,自体神经移植的应用有很大的局限性,例如造成第二个手术部位从供区获取组织,导致供区发病和功能丧失。神经的可用性和长度是有限的,目前自体移植的使用仅限于近5厘米长的关键神经间隙。供体神经大小的不匹配和自体神经与受体近端和远端残端的分支不一致是自体神经移植应用的主要限制因素。

事实上,选择的自体神经移植类型,如感觉神经、运动神经或混合神经,对于成功的结果也很重要,因为轴突大小、分布和排列的不匹配限制了自体神经移植的再生能力。Nichols等人报道了自体运动神经或混合神经移植轴突再生优于感觉神经移植。自体神经移植的另一个重要缺点是潜在的感染和疼痛性神经瘤的形成。此外,由于需要二次手术,病人的恢复时间较长。

自体移植的局限性迫使研究人员研究和开发替代方法,例如制造用于周围神经损伤的新型神经导管。

同种移植

同种异体神经移植是一种将周围神经损伤与来自同一物种不同个体的组织桥接的技术。

同种异体神经组织可作为引导的支持物和来源,供者来源的施万细胞可促进近端和远端轴突的连接,从而实现靶组织或器官的再神经化。然而,同种异体移植物的使用存在局限性,特别是免疫排斥反应、交叉感染的风险、继发感染和供应有限。因此,同种异体移植的应用需要全身免疫抑制治疗,但长期免疫抑制由于感染风险增加,导致治愈率降低,偶尔会导致肿瘤形成等全身效应而不是理想的治疗方法。

为了克服这些局限性,神经移植物可以通过反复的冻融循环、照射和用清洁剂去细胞化来处理。

异种移植

异种神经移植是从受体以外的物种中获得的。

1997年,Hebebrand等人将从金色叙利亚仓鼠处获得的2cm的异种坐骨神经移植到Lewis大鼠坐骨神经0.5cm的缝隙中。通过步行轨迹分析、测量体感诱发电位和对异种神经进行组织学检查来评估移植手术的性能。用RS-61443和FK-506对实验模型进行免疫抑制,以非免疫抑制动物为对照。实验动物的功能恢复不如对照同种移植物。另一方面,Jia等人,采用脱细胞异种神经移植,并植入骨髓基质细胞(BMSCs)。异种移植材料取自Sprague-Dawley大鼠和新西兰兔,植入1cm大鼠坐骨神经间隙。

将同种异体移植物和异种移植物与电生理学研究进行比较,发现异种移植物在再生神经元方面与同种异体移植物一样有效。然而,异种移植会考虑到跨物种疾病传播的风险。

神经导管

去细胞神经外膜导管

同种异体和异种移植物有可能在宿主组织中引起免疫原性反应。为了抑制免疫原性反应,移植物与免疫抑制剂联合使用。然而,使用这些药物可能会导致更易感染和肿瘤的形成。因此,为了消除引起免疫原性反应的细胞成分,保留已知能增强再生能力的天然细胞外基质(ECM),人们开发了“去细胞化方法”。

保存细胞外基质(ECM)与同种异体或异种移植物的基底膜一起保存,为再生轴突提供了一种机械引导手段。脱细胞过程包括各种物理和化学方法以及酶法。广泛使用的物理方法有冻干、直接加压、超声和搅拌。

  • 冷冻神经组织导致细胞膜破裂,导致细胞溶解。在冷冻步骤中,应避免因快速冷冻产生冰晶而导致ECM中断。

  • 直接加压法是另一种用于移植物去细胞的方法。

  • 机械搅拌和超声处理与化学处理一起用来破坏细胞膜。

使用或不使用物理处理的化学方法包括使用碱性和酸性溶液的工艺,非离子、离子和zwitter离子洗涤剂,低张和高渗溶液。用酸性或碱性溶液处理会溶解细胞成分并破坏核酸。离子洗涤剂如十二烷基硫酸钠和Triton X-200也能溶解细胞成分和变性蛋白质。

低张和高渗溶液如乙二胺四乙酸(EDTA)溶液会导致渗透性休克并导致细胞溶解。像EDTA这样的溶液通常与涉及酶(如核酸外切酶、核酸内切酶和胰蛋白酶)的治疗结合使用。移植物中残留的组织需要去细胞,这可能是由于移植物体内残留的化学物质造成的。胰蛋白酶蛋白水解作为一种酶降解方法已被广泛应用于真皮或心脏瓣膜的去细胞化,但其稳定性可能受到胰蛋白酶处理后胶原含量变化的限制。

各种研究表明,在大鼠坐骨模型中,去细胞化的移植物能够促进超过1-2厘米长的缺损的再生。一项研究表明,在没有软骨素酶等其他成分的支持下,去细胞神经外膜导管用于治疗超过1-2厘米的缺损时,轴突并不总是到达远端。

在研究中发现4cm长的冻干去细胞异体神经和软骨素酶可以支持整个长度的再生。在一个大鼠模型上研究了含有自体、转分化脂肪干细胞(dADSCs)的去细胞同种异体动脉导管对8 mm长面神经分支损伤的影响。术后8周,进行振动功能评价和电生理评价,面神经运动神经元逆行标记,再生神经形态分析。

脱细胞异体动脉导管与自体dADSCs联合应用对神经再生和功能恢复有明显的效果。通过在纤维蛋白中补充骨髓基质干细胞来实现去细胞神经移植的神经再生。在这项研究中,间充质干细胞(MSCs)注射在移植物周围有助于改善周围神经损伤的神经再生和功能恢复,这是通过功能分析和组织学确定的。

人工神经导管

圆柱形神经移植早在1879年就被用于神经修复,第一次应用骨管作为神经导管。然而,由于疤痕的形成,实验失败了。神经移植的优点是:1)有限的肌成纤维细胞浸润,2)减少瘢痕形成,3)引导神经再生。由于其局限性,如可能导致供体部位发病,研究人员已开始设计人工神经导管,使用合成和生物聚合物作为替代治疗。理想的神经导管需要具有生物相容性、生物降解性、柔韧性、高孔隙率、顺应性、神经诱导性、具有适当表面的神经传导性和机械性能。神经导管可采用不同的设计方法;它们可以是具有内部通道或基质的圆柱形管,多孔壁,或细胞合并,设计可能包括生物活性剂。

具有适当性质的高分子材料已被研究并用作周围神经再生的神经导管。

生物神经导管

生物聚合物在组织工程和其他植入物中的生物活性使得细胞与支架之间的相互作用更好,从而促进细胞的增殖和组织的再生。尽管生物聚合物的高生物相容性使其成为神经导管的良好候选材料,但它们也有一些局限性,如批次间的差异。

在神经再生研究中常用的生物聚合物有聚酯(聚3-羟基丁酸酯)[P3HB]和共聚酯(β-羟基丁酸与β-羟基戊酸))、蛋白质(丝素蛋白、胶原、明胶、纤维蛋白原、弹性蛋白和角蛋白)和多糖(透明质酸、壳聚糖和海藻酸钠)占大多数。

聚酯

各种生物聚酯是从微生物中获得的。

  • P3HB(聚-3-羟基丁酸酯)

    P3HB型用作细菌储存产品,可作为可吸收片材、颗粒和薄膜在商业上获得,它已被用于周围神经再生研究二十多年。

  • PHBV

    3-羟基丁酸酯和3-羟基戊酸盐共聚物是应用最广泛的PHBV聚合物,因为我们能够根据我们的需要和它们的加工性能来调整它们的物理特性,这些特性使得这些聚合物非常适合用于神经再生研究以及其他组织工程应用。

蛋白质

由ECM蛋白(胶原、纤维蛋白、纤维粘连蛋白和透明质酸)和神经营养因子构建的支架已被广泛研究用于周围神经再生。

  • 胶原蛋白

    胶原蛋白是一个由26个蛋白质组成的家族,具有三重螺旋结构,以一个延伸的棒状结构,是细胞外基质的主要成分。

  • 明胶

    明胶是一种变性的胶原蛋白,与多种化学物质交联后被广泛应用于组织工程。

  • 纤维连接蛋白

    纤维连接蛋白(Fibronectin)是一种二硫键连接的糖蛋白。它在细胞粘附、形态、迁移和分化中起重要作用,并与胶原、肝素、纤维蛋白和细胞表面受体相互作用。

  • 丝素蛋白

    蚕丝是由蜘蛛纲成员合成的纤维蛋白和螨类、蝴蝶和蛾子的腺体中排列的特殊上皮细胞合成的。丝素蛋白是由重复的蛋白质序列组成的。蜘蛛丝蛋白也被推荐用于神经再生,因为它们支持细胞增殖和再生。

  • 角蛋白

    角蛋白是角质形成细胞产生的一种蛋白质。半胱氨酸在结构上富含硫,它对头发的黏结起作用。角蛋白支架能够支持神经再生。

  • 多糖

    多糖是一类由单糖或双糖组成的生物大分子,在细胞膜和细胞内通讯中起作用;它们在存储方面也有作用,它们具有高度的生物相容性,这使得它们在组织工程应用中非常有用。神经再生结构中最常用的一些糖类如下所示。

  • 甲壳素和壳聚糖

    甲壳素是昆虫外骨骼和甲壳类动物外骨骼细胞骨架的组成部分,是壳聚糖的主要来源,是地球上含量仅次于淀粉的多糖。壳聚糖基支架具有形成相互连接的多孔结构(海绵)的能力、阳离子性质和合理的力学性能,因此在组织工程应用中具有吸引力。

  • 透明质酸

    透明质酸是一种普遍存在于人体内的免疫中性多糖,临床应用已有30多年,透明质酸可以加工成许多物理形式,如粘弹性溶液、水凝胶、电纺纤维、无纺布网、大孔和纤维海绵、柔性薄板和纳米颗粒。

合成神经导管

生物可降解合成聚合物具有以下优点:1)一些可生物降解的合成聚合物具有生物相容性,不会引发任何免疫反应,是一种很有吸引力的替代品,2)在不改变聚合物本体特性的前提下,通过改变工艺条件和组分可以控制其力学性能和降解速率;3)可以以多种形式加工,以增强组织的生长。随着时间的推移,神经导管的材料选择转向使用更具生物相容性的合成聚合物。可生物降解聚酯,如聚乳酸(PLA)、聚乙醇酸(PGA)、聚(乳酸-乙醇酸)(PLGA)、己内酯(ε-己内酯)(PCL)、聚氨酯(PUs)、碳酸三甲酯-ε-己内酯、聚(D,L-丙交酯-co-ε-己内酯)和非生物降解聚合物,如甲基丙烯酸盐水凝胶、聚苯乙烯、有机硅,以聚四氟乙烯为神经导管材料。

聚酯

聚酯在主链上有一个酯官能团。聚乳酸、聚乳酸(PLLA)、PGA、PLGA和PCL是神经导管制造中最常用的聚酯。

  • PLA

    聚乳酸可由玉米、甜菜或小麦中提取的乳酸制成,具有生物相容性. 在许多研究中,聚乳酸被用作神经导管材料。与自体移植相比,在微图案化表面添加神经干细胞进一步提高了导管的疗效。

  • PLLA

    PLLA是PLA的一种立体规则的高度结晶形式。它也被广泛应用于组织工程应用。

  • PGA

    PGA是另一种可生物降解、刚性、热塑性和高结晶性聚酯,具有很高的拉伸模量,在有机溶剂中的溶解度很低。PGA通常也与天然聚合物如胶原蛋白结合在一起。

  • PLGA

    作为一种低反应性神经材料,FDA已经广泛地将其作为一种低炎症反应材料。与其他导管相比,PCLF管能显著改善神经再生和恢复。

  • PCL

    PCL另一种聚酯,在有机溶剂中具有高溶解度,熔点低(55°C–60°C)和玻璃化转变温度(−60°C)

  • 聚(D,L-丙交酯-co-ε-己内酯)

    聚(D,L-丙交酯-co-ε-己内酯)是乳酸和己内酯单体的共聚物。

  • 聚氨酯

    聚氨酯是一种主链含有氨基甲酸酯键的聚合物,用于制造许多生物医学设备,包括神经导管,聚氨酯神经导管具有更好的再生性能,可与自体神经移植相媲美。

  • 多元醇

    聚乙烯醇(PVA)是一种水溶性、不可降解的合成聚合物,除了在生物医学领域的许多其他用途外,还被用作神经导管材料。聚乙烯醇会与壳聚糖复合。

混合神经导管

神经导管的表面特性和电荷密度对细胞粘附有重要影响。

大多数用于此目的的合成材料都是疏水性的,它们不太适合细胞粘附。因此,研究人员开始在导管表面涂上ECM蛋白或设计具有不同结构的混合神经导管来克服这个问题。近年来,由于天然聚合物和合成聚合物的结合使其性能得到改善,因此,在神经导向器生产中使用这种杂交种的情况有所增加。

  • 合成生物材料聚酯

    像PHBV这样的生物聚酯可以与合成聚合物结合。体外研究表明,细胞能够在三维组织工程化神经管中存活并保持排列整齐。

  • 合成生物材料多糖

    像壳聚糖这样的多糖被广泛地与合成聚合物结合来制备神经导管。将含壳聚糖的支架材料与PC12神经细胞接触进行体外细胞培养,发现在PVA支架中加入壳聚糖可提高神经细胞的活性和增殖能力。

  • 含合成生物材料的蛋白质

    蛋白质是天然聚合物,因此,它们与合成聚合物的共混物可视为杂化结构。杂交制剂中最常用的蛋白质是胶原蛋白。与自体移植相比,这种PGA胶原神经导管具有更好的功能恢复。

未来展望和结论

神经引导领域正朝着多种方向发展,如选择不同类型的神经和支持细胞(施万细胞),利用纤维或通道进行引导,利用生物活性剂(主要是生长因子)增强种子细胞或缺陷部位附近细胞的反应,并选择聚合物作为引导材料。所取得的进展是重大的,从商业上可买到的神经导管的数量可以看出,导管限制于我们可以使用的精密材料和设计处理的长度缺陷(不超过2厘米)。

引用

1.

Daly   W, Yao L, Zeugolis D, et al. A biomaterials approach to peripheral   regeneration: bridging the peripheral nerve gap and enhancing functional   recovery. J R Soc Interface. 2012;9:202–221.

2.

Seddon   H. Three types of nerve injury. Brain. 1943;66:237–288.

3.

Sunderland   S. A classification of peripheral nerve injuries producing loss of   function. Brain. 1951;74:491–516.

4.

Campbell   WW. Evaluation and management of peripheral nerve injury. Clin   Neurophysiol. 2008;119:1951–1965.

5.

Deumens   R, Bozkurt A, Meek MF, et al. Repairing injured peripheral nerves: bridging   the gap. Prog Neurobiol. 2010;92:245–276.

6.

Millessi   H. Techniques for nerve grafting. Hand Clin. 2000;16:73–91.

7.

Kehoe   S, Zhang XF, Boyd D. FDA approved guidance conduits and wraps for peripheral   nerve injury: a review of materials and efficacy. Injury.   2012;43:553–572.

8.

Siemionow   M, Brzezicki G. Chapter 8: current, techniques and concepts in peripheral   nerve repair. In: Stefano G, Pierluigi T, Bruno B, editors. International   Review of Neurobiology. San Diego, CA: Academic Press; 2009:141–172.

9.

Nichols   CM, Brenner MJ, Fox IK, et al. Effects of motor versus sensory nerve grafts   on peripheral nerve regeneration. Exp Neurol. 2004;190:347–355.

10.

Siemionow   M, Sonmez E. Nerve Allograft transplantation: a review. J Reconstr   Microsurg. 2007;23(8):511–520.

11.

Hebebrand   D, Zohman G, Jones NF. Nerve xenograft transplantation: immunosuppression   with FK-506 and RS-61443. Biomaterials. 1997;22(3):304–307.

12.

Jia   HJ, Wang Y, Tong XJ, et al. Sciatic nerve repair by acellular nerve   xenografts implanted with BMSCs in rats xenograft combined with BMSCs. Synapse.   2012;66:256–269.

13.

Mackinnon   S, Hudson A, Falk R, Bilbao J, Kline D, Hunter D. Nerve allograft response: a   quantitative immunological study. Neurosurgery. 1982;10:61–69.

14.

Mackinnon   SE, Doolabh VB, Novak CB, Trulock EP. Clinical outcome following nerve   allograft transplantation. Plast Reconstr Surg. 2001;107:1419–1429.

15.

Hudson   TW, Liu SY, Schmidt CE. Engineering an improved acellular nerve graft via   optimized chemical processing. Tissue Eng. 2004;10:1346–1358.

16.

Gilbert   TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials.   2006;27(19):3675–3683.

17.

Gulati   AK. Evaluation of acellular and cellular nerve grafts in repair of rat   peripheral nerve. J Neurosurg. 1988;68:117–123.

18.

Freytes   DO, Badylak SF, Webster TJ, et al. Biaxial strength of multilaminated   extracellular matrix scaffolds. Biomaterials. 2004;25:2353–2361.

19.

Lin   P, Chan WC, Badylak SF, et al. Assessing porcine liver-derived biomatrix for   hepatic tissue engineering. Tissue Eng. 2004;10:1046–1053.

20.

Yoo   JJ, Meng J, Oberpenning F, et al. Bladder augmentation using allogenic   bladder submucosa seeded with cells. Urology. 1998;51:221–225.

21.

De   Filippo RE, Yoo JJ, Atala A. Urethral replacement using cell seeded tubularized   collagen matrices. J Urol. 2002;168:1789–1792.

22.

Dahl   SL, Koh J, Prabhakar V, et al. Decellularized native and engineered arterial   scaffolds for transplantation. Cell Transplant. 2003;12:659–666.

23.

Chen   RN, Ho HO, Tsai YT, et al. Process development of an acellular dermal matrix   (ADM) for biomedical applications. Biomaterials. 2004;25(13):2679–2686.

24.

Woods   T, Gratzer PF. Effectiveness of three extraction techniques in the   development of a decellularized bone–anterior cruciate ligament–bone   graft. Biomaterials. 2005;26:7339–7349.

25.

Vyavahare   N, Hirsch D, Lerner E, et al. Prevention of bioprosthetic heart valve   calcification by ethanol preincubation. Efficacy and mechanisms. Circulation.   1997;95:479–488.

26.

Goissis   G, Suzigan S, Parreira DR, et al. Preparation and characterization of   collagen–elastin matrices from blood vessels intended as small diameter   vascular grafts. Artif Organs. 2000;24:217–223.

27.

Courtman   DW, Pereira CA, Kashef V, et al. Development of a pericardial acellular   matrix biomaterial: biochemical and mechanical effects of cell   extraction. J Biomed Mater Res. 1994;28:655–666.

28.

Rieder   E, Kasimir MT, Silberhumer G, et al. Decellularization protocols of porcine   heart valves differ importantly in efficiency of cell removal and   susceptibility of the matrix to recellularization with human vascular   cells. J Thorac Cardiovasc Surg. 2004;127:399–405.

29.

Gamba   PG, Conconi MT, Lo Piccolo R, et al. Experimental abdominal wall defect   repaired with acellular matrix. Pediatr Surg Int. 2002;18:327–331.

30.

Clark   JN, Ogle MF, Ashworth P, et al. Prevention of calcification of bioprosthetic   heart valve cusp and aortic wall with ethanol and aluminium chloride. Ann   Thorac Surg. 2005;79(3):897–904.

31.

Frerichs   O, Fansa H, Schicht C, Wolf G, Schneider W, Keilhoff G. Reconstruction of   peripheral nerves using acellular nerve grafts with implanted cultured   Schwann cells. Microsurgery. 2002;22(7):311–315.

32.

Krekoski   CA, Neubauer D, Graham JB, et al. Metalloproteinase-dependent predegeneration   in vitro enhances axonal regeneration within acellular peripheral nerve   grafts. J Neurosci. 2002;22(23):10408–10415.

33.

Kim   BS, Yoo JJ, Atala A. Peripheral nerve regeneration using acellular nerve   grafts. J Biomed Mater Res A. 2004;68(2):201–209.

34.

Neubauer   D, Graham JB, Muir D. Chondroitinase treatment increases the effective length   of acellular nerve grafts. Exp Neurol. 2007;207:163–170.

35.

Whitlock   EL, Tuffaha SH, Luciano JP, et al. Processed allografts and type I collagen   conduits for repair of peripheral nerve gaps. Muscle Nerve.   2009;39:787–799.

36.

Sun   F, Zhou K, Mi WJ, et al. Combined use of decellularized allogeneic artery   conduits with autologous transdifferentiated adipose-derived stem cells for   facial nerve regeneration in rats. Biomaterials. 2011;32(32):8118–8128.

37.

Zhao   Z, Wnag Y, Peng J, et al. Improvement in nerve regeneration through a   decellularized nerve graft by supplementation with bone marrow stromal cells   in fibrin. Cell Transplant. 2014;23(1):97–110.

38.

Gluck   T. Ueber Transplantation, Regeneration und entzündliche Neubildung. Klin   Wochenschr. 1881;18:554–557.

39.

Lundborg   G. A 25-year perspective of peripheral nerve surgery: evolving   neuroscientific concepts and clinical significance. J Hand Surg.   2000;25:391–414.

40.

Verreck   G, Chun I, Li Y, et al. Preparation and physico-chemical characterization of   biodegradable nerve guides containing the nerve growth agent   sabeluzole. Biomaterials. 2005;26:1307–1315.

41.

Freed   LE, Vunjak-Novakovic G, Biron RJ, et al. Biodegradable polymer scaffolds for   tissue engineering. Nat Biotechnol. 1994;12:689–693.

42.

Schmidt   CE, Leach JB. Neural tissue engineering: strategies for repair and   regeneration. Annu Rev Biomed Eng. 2003;5:293–347.

43.

Hrabak   O. Industrial production of poly-3-hydroxybutyrate. FEMS Microbiol Rev.   1992;103:251–256.

44.

Williams   SF, Martin DP, Horowitz DM, Peoples OP. PHA applications: addressing the   price performance issue: I. Tissue engineering. Int J Biol Macromol.   1999;25:111–121.

45.

Hazari   A, Johansson-Rudén G, Junemo-Bostrom K, et al. A new resorbable wrap-around   implant as an alternative nerve repair technique. J Hand Surg Br.   1999;24:291–295.

46.

Aberg   M, Ljungberg C, Edin E, et al. Clinical evaluation of a resorbable   wrap-around implant as an alternative to nerve repair: a prospective,   assessor-blinded, randomised clinical study of sensory, motor and functional   recovery after peripheral nerve repair. J Plast Reconstr Aesthet Surg.   2009;62:1503–1509.

47.

Terenghi   G, Mosahebi A. The interface between peripheral axons, Schwann cells and   biosynthetic nerve guides. In: Aldskogius H, Fraher J, editors. Glial   Interfaces in the Nervous System: Role in Repair and Plasticity.   Amsterdam: IOS Press; 2002:13–20.

48.

Armstrong   SJ, Wiberg M, Terenghi G, et al. ECM molecules mediate both Schwann cell   proliferation and activation to enhance neurite outgrowth. Tissue Eng.   2007;13(12):2863–2870.

49.

Mohanna   PN, Young RC, Wiberg M, et al. A composite poly-hydroxybutyrate–glial growth   factor conduit for long nerve gap repairs. J Anat. 2003;203:553–565.

50.

Erba   P, Mantovani C, Kalbermatten DF, et al. Regeneration potential and survival   of transplanted undifferentiated adipose tissue-derived stem cells in   peripheral nerve conduits. J Plast Reconstr Aes. 2010;63(12):e811–e817.

51.

Masaeli   E, Morshed M, Nasr-Esfahani MH, et al. Fabrication, characterization and   cellular compatibility of poly(hydroxy alkanoate) composite nanofibrous   scaffolds for nerve tissue engineering. PloS One. 2013;8(2):e57157.

52.

Biazar   E, Heidari KH. A nanofibrous phbv tube with Schwann cell as artificial nerve   graft contributing to rat sciatic nerve regeneration across a 30-mm defect   bridge. Cell Commun Adhes. 2013;20(1–2):41–49.

53.

Biazar   E, Keshel SH. Chitosan–cross-linked nanofibrous PHBV nerve guide for rat   sciatic nerve regeneration across a defect bridge. ASAIO J.   2013;56(6):651–659.

54.

Prabhakaran   MP, Atankhan E, Ramakrishna S. Electrospun aligned PHBV/collagen nanofibers   as substrates for nerve tissue engineering. Biotechnol Bioeng.   2013;110(10):2775–2784.

55.

Kadler   KE, Holmes DE, Trotter JA, et al. Collagen fibril formation. Biochem J.   1996;316:1–11.

56.

Evans   DG, Baser ME, McGaughran J, Sharif S, Howard E, Moran A. Malignant peripheral   nerve sheath tumours in neurofibromatosis 1. J Med Genet.   2002;39:311–314.

57.

Brown   RA, Phillips JB. Cell responses to biomimetic protein scaffolds used in   tissue repair and engineering. Int Rev Cytol. 2007;262:75–150.

58.

Brown   RA, Wiseman M, Chuo C-B, Cheema U, Nazhat SN. Ultrarapid engineering of   biomimetic materials and tissues: fabrication of nano- and microstructures by   plastic compression. Adv Funct Mater. 2005;15:1762–1770.

59.

Archibald   S, Krarup C, Shefner J, et al. A collagen-based nerve guide conduit for   peripheral nerve repair: an electrophysiological study of nerve regeneration   in rodents and nonhuman primates. J Comp Neurol. 1991;306:685–696.

60.

Mackinnon   SE, Hudson AR, Bojanowski V, Hunter DA, Maraghi E. Peripheral-nerve injection   injury with purified bovine collagen – an experimental-model in the   rat. Ann Plast Surg. 1985;14:428–436.

61.

Meek   MF, Coert JH. US Food and Drug Administration/Conformit Europe–approved   absorbable nerve conduits for clinical repair of peripheral and cranial   nerves. Ann Plast Surg. 2008;60:466–472.

62.

Kramer   BA, Kader Ag, Klark RN. Use of the Neuro-Wrap system for severe   post-electroconvulsive therapy headaches. J ECT. 2008;24(2):152–155.

63.

Li   ST, Yuen D, inventors; Collagen Matrix, Inc., assignee. Implant devices for   nerve repair. United States patent US6716225 B2. April 6, 2004.

64.

Li   ST, Archibald SJ, Krarup C, Madison RD. Peripheral nerve repair with collagen   conduits. Clin Mater. 1992;9:195–200.

65.

Lohmeyer   JA, Siemers F, Machens HG, et al. The clinical use of artificial nerve   conduits for digital nerve repair: a prospective cohort study and literature   review. J Reconstr Microsurg. 2009;25:55–61.

66.

Madduri   S, Feldman K, Tervoort T. Collagen nerve conduits releasing the neurotrophic   factors GDNF and NGF. J Controlled Release. 2010;143:168–174.

67.

Yang   CR, Chen JD. Preparation and biological evaluation of chitosan–collagen–icariin   composite scaffolds for neuronal regeneration. Neurol Sci.   2013;34:941–947.

68.

Salvatore   L, Madaghiele M, Parisi C, Gatti F, Sannino A. Crosslinking of micropatterned   collagen based nerve guides to modulate the expected half life. J Biomed   Mater Res A. Epub February 14, 2014.

69.

Liu   BS, Yao CH, Hsu SH, et al. A novel use of genipin-fixed gelatin as   extracellular matrix for peripheral nerve regeneration. J Biomater Appl.   2004;19:21–34.

70.

Cenni   E, Ciapetti G, Stea S, et al. Biocompatibility and performance in vitro of a   hemostatic gelatin sponge. J Biomater Sci Polym Ed. 2000;11:685–699.

71.

Gamez   E, Goto Y, Nagata K, Iwaki T, Sasaki T, Matsuda. Photofabricated   gelatin-based nerve conduits: nerve tissue regeneration potential. Cell   Transplant. 2004;13(5):549–564.

72.

Chen   YS, Chang JY, Chen CY, et al. An in vivo evaluation of a biodegradable   genipin-cross-linked gelatin peripheral nerve guide conduit material. Biomaterials.   2005;26:3911–3918.

73.

Liu   BS. Fabrication and evaluation of a biodegradable   proanthocyanidin-crosslinked gelatin conduit in peripheral nerve   repair. J Biomed Mater Res A. 2008;15;87(4):1092–1102.

74.

Nie   X, Deng M, Yang M, Liu L, Zhang Y, Wen X. Axonal regeneration and   remyelination evaluation of chitosan/gelatin based nerve guide combined with   transforming growth factor-β1 and Schwann cells. Cell Biochen Biophys.   2014;68:163–172.

75.

Whitworth   IH, Terenghi G, Green CJ, et al. Targeted delivery of nerve growth factor via   fibronectin conduits assists nerve regeneration in control and diabetic   rats. Eur J Neurosci. 1995;7:2220–2225.

76.

Whitworth   IH, Brown RA, Dore CJ, et al. Nerve growth factor enhances nerve regeneration   through fibronectin grafts. J Hand Surg. 1996;21B:514–522.

77.

Ahmed   Z, Brown RA. Adhesion, alignment and migration of cultured Schwann cells on   ulrathin fibronectin fibres. Cell Motil Cytoskel. 1999;42:331–343.

78.

Phillips   JB, Bunting SCJ, Ward Z, Hall SM, Brown RA. Fibronectin tubes as tissue   engineering devices for peripheral nerve repair. Molecular, Cellular and   Tissue Engineering, 2002. Proceedings of the IEEE-EMBS Special Topic   Conference.

79.

Mosahebi   A, Wiberg M, Terenghi G. Addition of fibronectin to alginate matrix improves   peripheral nerve regeneration in tissue-engineered conduits. Tissue Eng.   2009;9(2):209–218.

80.

Ding   T, Lu WW, Zheng Y, Li Zy, Pan Hb, Luo Z. Rapid repair of rat sciatic nerve   injury using a nanosilver-embedded collagen scaffold coated with laminin and   fibronectin. Regen Med. 2011;6(4):437–447.

81.

Kaplan   DL, Mello SM, Arcidiacono S, et al. In: McGrath KKD, editor. Protein   Based Materials. Boston: Birkhauser; 1998:103–131.

82.

Bini   E, Knight DP, Kaplan DL. Mapping domain structures in silks from insects and   spiders related to protein assembly. J Mol Biol. 2004;335(1):27–40.

83.

Yang   Y, Chen X, Ding F, et al. Biocompatibility evaluation of silk fibroin with   peripheral nerve tissues and cells in vitro. Biomaterials.   2007;28:1643–1652.

84.

Huang   W, Begum R, Barber T, et al. Regenerative potential of silk conduits in   repair of peripheral nerve injury in adult rats. Biomaterials.   2012;33:59–71.

85.

Gu   Y, Zhu J, Xue C, et al. Chitosan/silk fibroin-based, Schwann cell-derived   extracellular matrix-modified scaffolds for bridging rat sciatic nerve   gaps. Biomaterials. 2014;35(7):2253–2263.

86.

Schacht   K, Scheibel T. Processing of recombinant spider silk proteins into   tailor-made materials for biomaterials applicayions. Curr Opin Biotech.   2014;29C:62–69.

87.

Crewther   WG, Fraser RDB, Lennox FG, Lindley H. The chemistry of keratins. In: Anfinsen   CB Jr, Anson ML, Edsall JT, Richards FM, editors. Advances in Protein   Chemistry. New York: Academic Press; 1965:191–346.

88.

Lin   YC, Ramadan M, Van Dyke M, et al. Keratin gel filler for peripheral nerve   repair in a rodent sciatic nerve injury model. Plast Reconstr Surg.   2012;129(1):67–78.

89.

Pace   LA, Plate JF, Mannava S, et al. A human hair keratin hydrogel scaffold   enhances median nerve regeneration in nonhuman primates: an   electrophysiological and histological study. Tissue Eng Part A.   2014;20(3–4):507–517.

90.

Sierpinski   P, Garrett J, Ma J, et al. The use of keratin biomaterials derived from human   hair for the promotion of rapid regeneration of peripheral nerves. Biomaterials.   2008;29(1):118–128.

91.

Nishinari   K, Takahashi R. Interaction in polysaccharide solutions and gels. Curr   Opin Colloid Interface Sci. 2003;8:396–400.

92.

Yu   L, Dean K, Li L. Polymer blends and composites from renewable   resources. Prog Polym Sci. 2006;31:576–602.

93.

Eugene   K, Lee YL. Implantable applications of chitin and chitosan. Biomaterials.   2003;24:2339–2349.

94.

Zheng   L, Cui HF. Use of chitosan conduit combined with bone marrow mesenchymal stem   cells for promoting peripheral nerve regeneration. J Mater Sci Mater Med.   2010;21(5);1713–1720.

95.

Haastert-Talini   K, Geuna S, Dahlin LB, et al. Chitosan tubes of varying degrees of   acetylation for bridging peripheral nerve defects. Biomaterials.   2013;34(38):9886–9904.

96.

Carvalho   CR, Correia MA, Oliveire JM, Reis RL. Chitosan nanofibers as scaffolds for   peripheral nerve regeneration. J Tissue Eng Reg Med. 2013;7(Supp   1):6–52.

97.

Hsu   SH, Kuo WC, Chen YT, et al. New nerve regeneration strategy combining   laminin-coated chitosan conduits and stem cell therapy. Acta Biomater.   2013;9(5):6606–6615.

98.

Burdick   AJ, Prestwich GD. Hyaluronic acid hydrogels for biomedical   applications. Adv Mater. 2011;23(12):H41–H56.

99.

Suri   S, Schmidt CR. Cell-laden hydrogel constructs of hyaluronic acid, collagen,   and laminin for neural tissue engineering. Tissue Eng Part A.   2010;16(5):1707–1713.

100.

Guan   S, Zhang XL, Lin XM, Liu TQ, Ma XH, Cui ZF. Chitosan/gelatin porous scaffolds   containing hyaluronic acid and heparan sulfate for neural tissue   engineering. J Biomater Sci Polym Ed. 2013;24(8):999–1014.

101.

Tian   B, Liu J, Dvir T, et al. Macroporous nanowire nanoelectronic scaffolds for   synthetic tissues. Nat Mater. 2012;11:986–994.

102.

Lu   MC, Huang YT, Lin JH, et al. Evaluation of a multi-layer microbraided   polylactic acid fiber-reinforced conduit for peripheral nerve   regeneration. J Mater Sci Mater Med. 2009;20:1175–1180.

103.

Hsu   SH, Chan SH, Chiang CM, et al. Peripheral nerve regeneration using a   microporous polylactic acid asymmetric conduit in a rabbit long-gap sciatic   nerve transection model. Biomaterials. 2011;32:3764–3775.

104.

Matsumine   H, Sasaki R, Yamato M, Okano T, Sakurai H. A polylactic acid non-woven nerve   conduit for facial nerve regeneration in rats. J Tissue Eng Regen Med.   2014;8(6):454–462.

105.

Ni   HC, Tseng TC, Chen JR, Hsu SH, Chiu IM. Fabrication of bioactive conduits   containing the fibroblast growth factor 1 and neural stem cells for   peripheral nerve regeneration across a 15 mm critical gap. Biofabrication.   2013;5:035010.

106.

Evans   GRD, Brandt K, Widmer MS, et al. In vivo evaluation of poly(L-lactic acid)   porous conduits for peripheral nerve regeneration. Biomaterials.   1999;20:1109–1115.

107.

Rutkowski   GE, Miller CA, Jeftinija S, Mallapragada SK. Synergistic effects of   micropatterned biodegradable conduits and Schwann cells on sciatic nerve   regeneration. J Neural Eng. 2004;1:151–157.

108.

Li   J, McNally H, Shi R. Enhanced neurite alignment on micro-patterned   poly-L-lactic acid films. J Biomed Mater Res Part A. 2008; 87:392–404.

109.

Liu   JJ, Wang CY, Wang JG, et al. Peripheral nerve regeneration using composite   poly(lactic acid-caprolactone)/nerve growth factor conduits prepared by   coaxial electrospinning. J Biomed Mater Res Part A. 2011;96:1–20.

110.

Xu   H, Holzwarth JM, Yan Y, et al. Conductive PPY/PDLLA conduit for peripheral   nerve regeneration. Biomaterials. 2014;35:225–235.

111.

Tabesh   H, Amoabediny G, Nik NS, et al. The role of biodegradable engineered   scaffolds seeded with Schwann cells for spinal cord regeneration. Neurochem   Int. 2009;54:73–83.

112.

Dellon   AL, Chang BW. An alternative incision for approaching recurrent median nerve   compression at the wrist. Plast Reconstr Surg. 1992;89:576–578.

113.

Costa   HJZR, Bento RF, Salomone R, et al. Mesenchymal bone marrow stem cells within   polyglycolic acid tube observed in vivo after six weeks enhance facial nerve   regeneration. Brain Res. 2013;1510:10–21.

114.

Sundback   C, Hadlock T, Cheney M, et al. Manufacture of porous polymer nerve conduits   by a novel low-pressure injection molding process. Biomaterials.   2003;24:819–830.

115.

Yang   Y, De Laporte L, Rives CB, et al. Neurotrophin releasing single and multiple   lumen nerve conduits. J Control Release. 2005;104:433–446.

116.

Wen   X, Tresco PA. Fabrication and characterization of permeable degradable poly(DL-lactide-co-glycolide)   (PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance   channels. Biomaterials. 2006;27:3800–3809.

117.

Oh   SH, Kim JH, Song KS, et al. Peripheral nerve regeneration within an   asymmetrically porous PLGA/Pluronic F127 nerve guide conduit. Biomaterials.   2008;29:1601–1609.

118.

Lee   JY, Bashur CA, Goldstein AS, et al. Polypyrrole-coated electrospun PLGA   nanofibers for neural tissue applications. Biomaterials.   2009;30:4325–4335.

119.

Shen   H, Shen ZL, Zhang PH, et al. Ciliary neurotrophic factor-coated   polylactic-polyglycolic acid chitosan nerve conduit promotes peripheral nerve   regeneration in canine tibial nerve defect repair. J Biomed Mater Res B   Appl Biomater. 2010;95:161–170.

120.

Daly   WT, Knight AM, Wang H, et al. Comparison and characterization of multiple   biomaterial conduits for peripheral nerve repair. Biomaterials.   2013;34:8630–8639.

121.

Sun   M, Kingham PJ, Reid AJ, et al. In vitro and in vivo testing of novel ultra   thin PCL and PCL/PLA blend films as peripheral nerve conduit. J Biomed   Mater Res Part A. 2010;93:1470–1481.

122.

Oliveira   JT, Almeida FM, Biancalana A, et al. Mesenchymal stem cells in a   polycaprolactone conduit enhance median-nerve regeneration, prevent decrease   of creatine phosphokinase levels in muscle, and improve functional recovery   in mice. Neuroscience. 2010;170:1295–1303.

123.

Moroder   P, Runge MB, Wang H, et al. Material properties and electrical stimulation   regimens of polycaprolactone fumarate-polypyrrole scaffolds as potential   conductive nerve conduits. Acta Biomater. 2011;7:944–953.

124.

Rui   J, Dadsetan M, Runge MB, et al. Controlled release of vascular endothelial   growth factor using poly-lactic-co-glycolic acid microspheres: in vitro   characterization and application in polycaprolactone fumarate nerve   conduits. Acta Biomater. 2012;8:511–518.

125.

Frattini   F, Lopes FRP, Almeida FM, et al. Mesenchymal stem cells in a polycaprolactone   conduit promote sciatic nerve regeneration and sensory neuron survival after   nerve injury. Tissue Eng Part A. 2012;18:2030–2039.

126.

Mobasseri   SA, Terenghi G, Downes S. Micro-structural geometry of thin films intended   for the inner lumen of nerve conduits affects nerve repair. J Mater Sci   Mater Med. 2013;24(7):1639–1647.

127.

Kim   JR, Oh SH, Kwon GB, et al. Acceleration of peripheral nerve regeneration   through asymmetrically porous nerve guide conduit applied with   biological/physical stimulation. Tissue Eng Part A. 2013;19:2674–2685.

128.

Radulescu   D, Dhar S, Young CM, et al. Tissue engineering scaffolds for nerve   regeneration manufactured by ink-jet technology. Mater Sci Eng C.   2007;27:534–539.

129.

McConnell   MP, Dhar S, Nguyen T, et al. Nerve growth factor expression response to   induction agent booster dosing in transfected human embryonic kidney   cells. Plast Reconstr Surg. 2005;115(2):506–514.

130.

Chiriac   S, Facca S, Diaconu M, et al. Experience of using the bioresorbable   copolyester poly(DL-lactide-ε-caprolactone) nerve conduit guide Neurolac™ for   nerve repair in peripheral nerve defects: report on a series of 28   lesions. J Hand Surg Eur. 2011;37:342–349.

131.

Yin   D, Wang X, Yan Y, Zhang R. Preliminary studies on peripheral nerve   regeneration using a new polyurethane conduit. J Bioact Compat Polym.   2007;22:143–159.

132.

Niu   Y, Chen KC, He T, et al. Scaffolds from block polyurethanes based on   poly(3-caprolactone) (PCL) and poly(ethylene glycol) (PEG) for peripheral   nerve regeneration. Biomaterials. 2014;35:4266–4277.

133.

Rutkowski   GE, Heath CA. Development of a bioartificial nerve graft. II. Nerve   regeneration in vitro. Biotechnol Prog. 2002;18:373–379.

134.

Shokrgozar   MA, Mottaghitalab F, Mottaghitalab V, et al. Fabrication of porous   chitosan/poly(vinyl alcohol) reinforced single-walled carbon nanotube   nanocomposites for neural tissue engineering. J Biomed Nanotechnol.   2011;7:1–9.

135.

Alhosseini   SN, Moztarzadeh F, Mozafari M, et al. Synthesis and characterization of   electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with   chitosan for neural tissue engineering. Int J Nanomed. 2012;7:25–34.

136.

Bergethon   PR, Trinkaus-Randall V, Franzblau C. Modified hydroxyethylmethacrylate   hydrogels as a modelling tool for the study of cell-substratum   interactions. J Cell Sci. 1989;92:111–121.

137.

Lee   J, Cuddihy MJ, Kotov NA. Three-dimensional cell culture matrices: state of   the art. Tissue Eng Part B. 2008;14:61–86.

138.

Dhoot   NO, Tobias CA, Fischer I, et al. Peptide-modified alginate surfaces as a   growth permissive substrate for neur-ite outgrowth. J Biomed Mater Res.   2004;71A:191–200.

139.

Yu   TT, Shoichet MS. Guided cell adhesion and outgrowth in peptide-modified   channels for neural tissue engineering. Biomaterials. 2005;26:1507–1514.

140.

Gupta   D, Tator CH, Shoichet MS. Fast-gelling injectable blend of hyaluronan and   methylcellulosefor intrathecal, localized delivery to the injured spinal   cord. Biomaterials. 2006:27:2370–2379.

141.

Wang   X, Cui T, Yan Y, Zhang R. Peroneal nerve regeneration using a unique bilayer   polyurethane-collagen guide conduit. J Bioact Compat Polym.   2009;24(2):109–127.

142.

Xu   H, Yan Y, Li S. PDLLA/chondroitin sulfate/chitosan/NGF conduits for   peripheral nerve regeneration. Biomaterials. 2011;32:4506–4515.

143.

Lee   BK, Ju YM, Cho JG, et al. End-to-side neurorrhaphy using an electrospun   PCL/collagen nerve conduit for complex peripheral motor nerve   regeneration. Biomaterials. 2012;33:9027–9036.

144.

Yucel   D, Torun Kose G, Hasirci V. Polyester based nerve guidance conduit   design. Biomaterials. 2010;31(7):1596–1603.

145.

Yucel   D, Torun Kose G, Hasirci V. Tissue engineered, guided nerve tube consisting   of aligned neural stem cells and astrocytes. Biomacromolecules.   2010;11:3584–3591.

146.

Cooper   A, Bhattarai N, Zhang M. Fabrication and cellular compatibility of aligned   chitosan–PCL fibers for nerve tissue regeneration. Carbohydr Polym.   2011;85(1):149–156.

147.

Kiyotani   T, Teramachi M, Takimoto Y, et al. Nerve regeneration across a 25-mm gap   bridged by a polyglycolic acid-collagen tube: a histological and   electrophysiological evaluation of regenerated nerves. Brain Res.   1996;740:66–74.

148.

Matsumato   K, Ohnishi K, Kiyotani T, et al. Peripheral nerve regeneration across an   80-mm gap bridged by a polyglycolic acid (PGA)-collagen tube filled with   laminin-coated collagen fibers: a histological and electrophysiological   evaluation of regenerated nerves. Brain Res. 2000;868:315–328.

149.

Toba   T, Nakamura T, Shimizu Y, et al. Regeneration of canine peroneal nerve with   the use of a polyglycolic acid-collagen tube filled with laminin-soaked   collagen sponge: a comparative study of collagen sponge and collagen fibers as   filling materials for nerve conduits. J Biomed Mater Res.   2001;58:622–630.

150.

Nakamura   T, Inada Y, Fukuda S, et al. Experimental study on the regeneration of   peripheral nerve gaps through a polyglycolic acid-collagen (PGA-collagen)   tube. Brain Res. 2004;1027:18–29.

【课程指南】周围神经应用解剖(高级)

原价468,拼团价328

支持永久复听

(0)

相关推荐