Plant J|江苏师范大学徐涛副教授与韩国学者共同揭示N6-甲基腺苷mRNA甲基化是影响拟南芥耐盐性的重要因素

作为mRNA中最丰富的内部修饰,RNA的N6-甲基腺苷(m6A)甲基化正在成为植物过程中胚胎过程,开花时间控制,小孢子生成和果实成熟的细胞过程中新的转录组基因调控层。 然而,m6A在植物对环境刺激的反应中的细胞作用仍不十分清楚。 

在这项研究中,我们表明m6A甲基化在拟南芥的盐胁迫耐受性中起重要作用。 m6A编写器组件的所有突变体,包括MTA,MTB,VIRILIZER(VIR)和HAKAI,均以依赖于m6A的方式表现出盐敏感性表型。

m6A水平降低幅度最大的vir突变体表现出盐超敏性表型。 vir突变体中的m6A甲基化组进行分析后发现,在3ʹUTR中整个转录组均丢失了m6A修饰。 

我们进一步证明,VIR介导的m6A甲基化可通过影响3ʹUTR与其他聚腺苷酸化作用相关的加长而负调节几个盐胁迫负调节剂(包括ATAF1,GI和GSTU17)的mRNA稳定性,从而调节活性氧的稳态。

我们的结果强调了转录组mRNA甲基化在拟南芥盐胁迫反应中的重要作用,并表明在胁迫适应过程中,m6A甲基化与3ʹUTR 长度和mRNA稳定性之间有很强的联系。

As the most abundant internal modification in mRNA, N6‐methyladenosine (m6A) methylation of RNA is emerging as a new layer of epitranscriptomic gene regulation in cellular processes, including embryo development, flowering time control, microspores generation, and fruit‐ripening, in plants. However, the cellular role of m6A in plant response to environmental stimuli remains largely unexplored. In this study, we show that m6A methylation plays an important role in salt stress tolerance in Arabidopsis. All mutants of m6A writer components, including MTA, MTB, VIRILIZER (VIR), and HAKAI, displayed salt‐sensitive phenotypes in an m6A‐dependent manner. The vir mutant, in which the m6A level was most highly reduced, exhibited salt‐hypersensitive phenotypes. Analysis of m6A methylome in the vir mutant revealed a transcriptome‐wide loss of m6A modification in the 3ʹUTR. We further demonstrated that VIR‐mediated m6A methylation modulates reactive oxygen species homeostasis by negatively regulating the mRNA stability of several salt stress negative regulators, including ATAF1, GI, and GSTU17, via affecting 3ʹUTR lengthening linked to alternative polyadenylation. Our results highlight the important role played by epitranscriptomic mRNA methylation in the salt stress response of Arabidopsis and indicate a strong link between m6A methylation and 3ʹUTR length and mRNA stability during stress adaptation.

文章来源AI原创;如有侵权请及时联系PaperRSS小编删除,转载请注明来源。

温馨提示:

为方便PaperRSS粉丝们科研、就业等话题交流。我们根据10多个专业方向(植物、医学、药学、人工智能、化学、物理、财经管理、体育等),特建立了30个国内外博士交流群。群成员来源欧美、日韩、新加坡、清华北大、中科院等全球名校。

(0)

相关推荐