数据领域,甲方和乙方分工的18个原则

很多甲方的数据人员编制有限,因此会找乙方完成相关工作,作为甲方,经常会发现乙方做事不给力,一方面可能的确是乙方能力问题,但另一方面,也许是你给乙方安排的工作出现了问题,对于不同类的数据工作,甲方和乙方的擅长程度是不同的,相互之间只有取长补短才能创造更高价值,今天就来谈谈甲乙方分工的18个原则。

原则一:

科斯说,是交易成本与管理成本的对比,决定了企业的边界。交易成本越低的事情,越应该外部化;管理成本越低的事情,越应该内部化,数据管理者应该遵循这个原则,挑战来源于如何比较这两个成本的大小,比如经常有企业把数据挖掘工作外包,显然低估了交易成本。

原则二:

康威定律说,组织架构决定系统架构和产品形态,大多企业的数据组织取名如数据管理部、数据运营部、经营分析部等等,从名称就能推断出其是以管理和运营为主的,因此不要擅自去增加研发等相关的岗位,比如算法,全部购买或外包吧,除非你有能力改变组织的职能。

原则三:

数字化时代给IT人带来了更多机会,可惜的是,现在IT发展的趋势是将跟业务无关的通用IT技术剥离出去,企业的IT人将越来越业务化,比如云计算推动了IaaS和PaaS的外包,云原生的发展历史就是一部将代码中跟业务无关的非功能代码逐步剥离的过程,无论是容器、微服务、Severless、Service Mesh还是DevOps。

这些东西让企业的IT人员不再有机会去搞什么高可用、容灾、安全、运维、测试、通信等通用技术研究,即使搞了也成为不了企业的核心竞争力,实际上,通用技术的交易成本和管理成本已经发生了巨大变化,这也在改变着企业数据团队核心竞争力的内涵,进而影响到甲乙方的分工原则。

原则四:

大多企业养不起庞大的数据开发团队,因为从科斯定理的角度看,这种团队的管理成本太高了,企业更需要的是少量的数据技术管理者,能够撬动更多的乙方资源为甲方服务,并且不被忽悠,当然数据技术管理者也不是那么容易培养,除了熟悉业务和管理,至少也要有开发的经历,否则关键时候顶不上去

原则五:

在甲方智能化、自动化水平还不够的前提下,简单重复的工作需要外包,无论是取数还是报表,其实这种模式对双方都有益,甲方解决了内部需求的问题,乙方赚取微薄的利润但获得了实践的机会,培养了一大批高端的数据人才

原则六:

越是业务化、协同化的数据工作,越不能外包,因为交易成本太高了,一方面是乙方很难在业务上跟上甲方的步伐,另一方面甲方很多工作讲究的是人情世故,显然乙方不太合适

原则七:

大数据平台技术发展一日千里,数据采集、数据处理等技术有明显的通用性、开源性、多样性等特点,通过引入合适的乙方不仅能完成建设和运营工作,还能实现弯道超车,甲方唯一要做的是拥有自己的数据架构师,能说服企业采用推荐的方案,并防止被乙方忽悠

原则八:

数据应用(产品)开发工作可以外包,无论是UI/UE、前端,后端,数据处理等等,甲方不要尝试去建立这么多技术栈,这些技术跟大数据平台一样,有足够的乙方可供选择,而且交易成本可控

原则九:

如果你的企业有志于成为一个数字化企业,那么数据仓库建模就不要外包,第一,数据已经成为生产要素,既然你的企业要自己设立财务部来管理自己的货币、固定资产,那么这个原则也同样适用于数据资产,第二,数据这种生产资料跟货币还不一样,它带有强烈的业务性的,而只有自己的员工才能与业务与时俱进,乙方可以帮你一时,但帮不了一世,第三,模型是需要迭代的,长远来讲,将数据仓库模型外包给乙方交易成本很高

原则十:

如果企业希望数据挖掘真能产生点效益,那么数据挖掘工作就不要外包,因为数据挖掘中业务理解、模型迭代、业务运营等的工作比重太高了,这些显然不适合乙方长期来做

原则十一:

数据分析工作不要外包,道理同数据挖掘,但数据分析咨询却可以外包,因为乙方的高端数据分析咨询专家可以给甲方提供方法论的指导,给出不同的看问题的角度,还能够帮助甲方跳出业务看业务

原则十二:

只要甲方能把业务问题定义清楚,明确输入和输出,算法工作就可以外包,乙方既可以临时抽调人员本地服务,也可以采取远程支持的形式,甲方也很难养活一只算法团队,有那么1-2个算法人员成不了气候,最后大多转型或者离职

原则十三:

数据治理工作涉及企业的组织、机制和流程,需要太多的协同,因此不要尝试外包,自己都搞不清楚状况的情况下,显然乙方会比你更会犯浑,当然这里的数据治理是狭义的,不是指那种建个大数据平台就认为是数据治理了的概念

原则十四:

数据产品经理不能外包,从业务、创新、协调、体验、迭代、个性等各个角度看,乙方来做这个事情都会极度不适,很多时候干成了开发经理,当然乙方干项目经理还是OK的,毕竟有很多规范和流程可以遵循

原则十五:

狭义的数据中台是指数据模型和数据服务,显然数据中台是无法外包的,当别人说可以帮你建数据中台的时候,首先要问问它关于数据中台的定义和理解,不要鸡同鸭讲了

原则十六:

为前面所有数据类工作提供支撑的任何工具,比如元数据工具、开发工具等等,是直接采购产品好还是自己定制好,取决于这类工作外包的可行性,越不能外包的工作,意味着标准化程度越低,越需要采取定制的方式实现

原则十七:

在数据领域任何一个专业,甲方都需要乙方顶尖数据专家的支持,无论是平台、算法、开发、挖掘、分析、治理等等,因为甲方总有5-10%的问题是自己无法解决的,顶尖专家则是超越了一切限制的存在

原则十八:

为了数据驱动业务,甲方要为乙方的创意买单,要为乙方的连接买单,即使这种工作很难用工时评估,否则乙方的高端人才就跑完了

当然没有什么是绝对的,如果甲方的很多工作的确没有相关的组织和人员保障,那么交给乙方是唯一的办法,但如果有的选择,就尽量遵循这些原则吧。

(0)

相关推荐

  • 第三方业务外包的是与非

    目前公用事业领域,大量使用第三方的业务外包已经是一个现象级的趋势.水务企业的经营管理活动中大量嵌套着第三方提供的产品和服务. 这个过程中,由于种种原因,许多不规范的操作普遍存在,由此给水务企业带来经营 ...

  • 短时的成功有时是一种完败

    关键词:短时.成功.整体.失败 有的人做事,喜欢追求眼前的成果和细节的成功,并且还很急,好像一刻也等不了. 希望明天早上一觉醒来就能实现工业4.0,希望明天库存降为零,希望明天生产效率翻一番..... ...

  • 十年,你好!

    本文主要答两位粉丝问,一位十年金蝶代理商,一位十年用友顾问,很开心,大家愿意跟我互动. 01 十年金蝶代理商 前言: 这个问题是他看了前面一篇传统软件企业的互联网在哪里?的留言. 答复: 首先,感谢你 ...

  • 宽投金融科技曲峰:金融大数据领域将进入分工明确的时代

    数据猿导读 金融大数据领域将会进入一个分工明确,互惠合作的时代.需要大数据服务的很多,而宣称能够提供大数据服务的也很多,但事实上,这是一个对于具体实施的要求非常严格,门槛相当高的领域. 本文为数据猿推 ...

  • 重庆点击互动:深挖大数据领域价值,助力企业精准定位营销

    网络相通.5G落地,身处万物互联的新时代,任何事物都能够通过数据和网络紧密相连.大到国家发展,小到企业营销,都离不开大数据的助力.重庆点击互动作为业内有名的网络科技公司,深挖大数据领域价值,面向广大企 ...

  • TOB顾问在甲方和乙方干活的区别

    图片来自网络 甲方干活没有边界,乙方干活相对可控 1.甲方比较流行全员营销,不管是卖什么的,都会让员工一起卖,美其名曰全员营销. 卖日用品或者食品的公司,可能会给每个员工下死任务,卖不掉就扣工资抵款, ...

  • 中互金协会旗下基金低调入股数据公司东方微银,两年间在大数据领域投资多家公司

    蓝鲸财经旗下,专注互联网金融领域独家报道,大大集团.中晋.快鹿.链家金融.海通布局互金等独家线索均已10万+并引起大量媒体跟进.蓝鲸是重要财经资讯门户+财经记者工作平台,拥有150家媒体传播资源,每天 ...

  • 互联网巨头竞逐医疗大数据领域 中康科技能突围吗?

    随着医疗企业在港交所扎堆上市,业内提供医疗大数据服务的科技公司也纷纷搭上顺风车,迎来上市窗口期. 6月25日,中康科技控股有限公司(以下简称"中康科技")向港交所递交招股书.在此之 ...

  • 甲方管理乙方,天经地义?

      专栏作者/六小西 说人话,做正事,爱思考,懂谦卑的医药圈怪咖. 产品经理或项目经理有一个很重要的工作内容,便是供应商管理.很多人一听,觉得简单.甲方管理乙方,出钱的管理干活的,水到渠成天经地义.但 ...

  • 【安全圈】App收集数据只能点同意?深圳出台国内数据领域首部基础性、综合性立法

    关键词 数据安全 深圳落实综合改革试点又一成果落地--<深圳经济特区数据条例>7月6日在深圳市人大常委会网站公布,并将于2022年1月1日起正式实施,这也是国内数据领域首部基础性.综合性立 ...

  • 律界情报255期:国内数据领域首部基础性、综合性立法公布

    律新社丨编辑部出品 本周关注 ○ 上海仲裁委员会改革后新一届委员会组成人员名单出炉 ○ 国内数据领域首部基础性.综合性立法<深圳经济特区数据条例>正式公布 ○ 2021世界人工智能大会法治 ...

  • 数据猿·金猿榜丨2017中国新零售数据领域最具潜力创业公司

    "2017中国新零售数据领域最具潜力创业公司"盘点源于数据猿推出的"金猿榜"系列内容,旨在通过媒体的方式与原则,发掘大数据领域最具潜力的创新型企业 编辑 | a ...