膳食补充剂NMN:掉落凡间的“长生不老仙丹”?!
“长寿药”、“长生不老药”,甚至“不死药”……这些听起来就很厉害的称号都是网上对膳食补充剂NMN的描述。本以为太上老君的仙丹只是天界的一个传说,但听这架势,仙丹是化为NMN,下凡来咱人间走一遭了?
「极养视界」科普实验室 原创出品
文章|Yu Shen MS
校稿|Xinyin PHD, RD 编审|Haoran PHD
编辑|Jiaqi Xu BS, RD 设计|Fay
阅读信息 📖
难度:★★☆☆☆ 类型:盘点 字数:3598
文章纲要
看NMN现原形
NMN抗衰的幕后“主使”
NMN让人“长生不老”是否成立?
官方对NMN的态度
平价替代有没有?
极养君有话说
极养视点
//////////
小科普 >>> Sirtuins与DNA修复、抵抗氧化应激以及长寿相关的信号通路都有关联,也被称为长寿蛋白。
施用NMN可以快速提升小鼠组织内NAD+水平[8],通过一年持续性的NMN补充后,小鼠体内的NAD+水平得到了提升;与年龄相关的体重增加得到了抑制;胰岛素敏感性、血脂、眼部功能以及骨密度都得到了改善,且未产生毒副作用[8]。
给老年老鼠施加NMN后,肌肉中一些由衰老引起的指标得到了改善,如线粒体功能改善、ATP合成增强、炎症减轻等[9]。
在线虫中,补充NMN改善了神经与肌肉功能并延长了线虫约10%的寿命[10]。
如上述所言,NMN的安全性及健康效用在小鼠及线虫体内得到了积极的验证,但要注意这些试验都为动物实验,NMN是否在人体中拥有相同的效用还需要临床试验的证明。
▲ 表二|市场常见NMN补充剂对比表
从烟酸(NA)出发合成NAD+的Preiss-Handler途径; 从色氨酸出发的合成NAD+的从头合成途径(de novo pathway); 将消耗NAD+所产生的副产物打捞起来,重新合成NAD+的补救途径(salvage pathway)(图一[13]),烟酰胺(NAM)、烟酰胺核糖(NR)以及NMN都是通过补救途径转化为NAD+。
▲ 图一|NAD+合成途径
在考虑NAD+的各个前体时我们也不能忘记,NAD+的合成不是有了前体就万事大吉,任何前体转变为NAD+都需要酶的帮助。烟酰胺磷酸核糖转移酶(NAMPT)是NAD+合成的关键限速酶,许多研究都证明了锻炼以及热量限制可提升这种酶的表达,从而增加NAD+的生物合成以及SIRT1的活性[19]。而肥胖以及高热量饮食会限制NAMPT酶活,减少NAD+在体内的水平[4]。
■■
参考文献
[1] Mills, K. F., Yoshida, S., Stein, L. R., Grozio, A., Kubota, S., Sasaki, Y., Redpath, P., Migaud, M. E., Apte, R. S., Uchida, K., Yoshino, J., & Imai, S. I. (2016). Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice. Cell metabolism, 24(6), 795–806. https://doi.org/10.1016/j.cmet.2016.09.013
[2] 'What is NMN?'. Retrieved 2020, from https://www.nmn.com/precursors/what-is-nmn
[3] Zhu, X. H., Lu, M., Lee, B. Y., Ugurbil, K., & Chen, W. (2015). In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. Proceedings of the National Academy of Sciences of the United States of America, 112(9), 2876–2881. https://doi.org/10.1073/pnas.1417921112
[4] Rajman, L., Chwalek, K., & Sinclair, D. A. (2018). Therapeutic Potential of NAD-Boosting Molecules: The In Vivo Evidence. Cell metabolism, 27(3), 529–547. https://doi.org/10.1016/j.cmet.2018.02.011
[5] Food and Drug Administration . Briefing Information for the Meeting of the Pharmacy Compounding Advisory Committee(2017, May). Retrieved2020, from https://www.fda.gov/media/104134/download
[6] NEURO.' Why Choose IV Treatment?'. Retrieved 2020, from https://neurowellnessspa.com/nad-plus/
[7] Grant, R., Berg, J., Mestayer, R., Braidy, N., Bennett, J., Broom, S., & Watson, J. (2019). A Pilot Study Investigating Changes in the Human Plasma and Urine NAD+ Metabolome During a 6 Hour Intravenous Infusion of NAD. Frontiers in aging neuroscience, 11, 257. https://doi.org/10.3389/fnagi.2019.00257
[8] Mills, K. F., Yoshida, S., Stein, L. R., Grozio, A., Kubota, S., Sasaki, Y., Redpath, P., Migaud, M. E., Apte, R. S., Uchida, K., Yoshino, J., & Imai, S. I. (2016). Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice. Cell metabolism, 24(6), 795–806. https://doi.org/10.1016/j.cmet.2016.09.013
[9] Gomes, A. P., Price, N. L., Ling, A. J., Moslehi, J. J., Montgomery, M. K., Rajman, L., White, J. P., Teodoro, J. S., Wrann, C. D., Hubbard, B. P., Mercken, E. M., Palmeira, C. M., de Cabo, R., Rolo, A. P., Turner, N., Bell, E. L., & Sinclair, D. A. (2013). Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell, 155(7), 1624–1638. https://doi.org/10.1016/j.cell.2013.11.037
[10] Mouchiroud, L., Houtkooper, R. H., Moullan, N., Katsyuba, E., Ryu, D., Cantó, C., Mottis, A., Jo, Y. S., Viswanathan, M., Schoonjans, K., Guarente, L., & Auwerx, J. (2013). The NAD(+)/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling. Cell, 154(2), 430–441. https://doi.org/10.1016/j.cell.2013.06.016
[11] Irie, J., Inagaki, E., Fujita, M., Nakaya, H., Mitsuishi, M., Yamaguchi, S., Yamashita, K., Shigaki, S., Ono, T., Yukioka, H., Okano, H., Nabeshima, Y. I., Imai, S. I., Yasui, M., Tsubota, K., & Itoh, H. (2020). Effect of oral administration of nicotinamide mononucleotide on clinical parameters and nicotinamide metabolite levels in healthy Japanese men. Endocrine journal, 67(2), 153–160. https://doi.org/10.1507/endocrj.EJ19-0313
[12] David Sinclair. 'Refrigerate nicotinamide mononucleotide (NMN) to reduce degradation?'. Retrieved 2020, from https://www.youtube.com/watch?v=cVxQVppyhhM&feature=emb_logo
[13] Verdin E. NAD⁺ in aging, metabolism, and neurodegeneration. Science. 2015 Dec 4;350(6265):1208-13. doi: 10.1126/science.aac4854. PMID: 26785480.
[14] Cantó, C., Menzies, K. J., & Auwerx, J. (2015). NAD(+) Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus. Cell metabolism, 22(1), 31–53. https://doi.org/10.1016/j.cmet.2015.05.023
[15] Pirinen E, Auranen M, Khan NA, Brilhante V, Urho N, Pessia A, Hakkarainen A, Kuula J, Heinonen U, Schmidt MS, Haimilahti K, Piirilä P, Lundbom N, Taskinen MR, Brenner C, Velagapudi V, Pietiläinen KH, Suomalainen A. Niacin Cures Systemic NAD+ Deficiency and Improves Muscle Performance in Adult-Onset Mitochondrial Myopathy. Cell Metab. 2020 Jun 2;31(6):1078-1090.e5. doi: 10.1016/j.cmet.2020.04.008. Epub 2020 May 7. Erratum in: Cell Metab. 2020 Jul 7;32(1):144. PMID: 32386566.
[16] Conze et al. (2019). Safety and Metabolism of Long-term Administration of NIAGEN (Nicotinamide Riboside Chloride) in a Randomized, Double-Blind, Placebo-controlled Clinical Trial of Healthy Overweight Adults. Sci Rep. 2019 Jul 5;9(1):9772. doi: 10.1038/s41598-019-46120-z.
[17] Martens et al. (2018). Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nature Communications volume 9, Article number: 1286.
[18] Remie et al. (2020). Nicotinamide Riboside Supplementation Alters Body Composition and Skeletal Muscle Acetylcarnitine Concentrations in Healthy Obese Humans. Am J Clin Nutr. 2020 Apr 22; nqaa072. doi: 10.1093/ajcn/nqaa072.
[19] Yoshino, J., Mills, K. F., Yoon, M. J., & Imai, S. (2011). Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell metabolism, 14(4), 528–536. https://doi.org/10.1016/j.cmet.2011.08.014