填空题讲解51:等腰三角形有关的题型讲解分析
△ABC中,AB=AC,∠A=30°,以B为圆心,BC长为半径画弧,分别交AC,AB于D,E两点,并连结BD,DE. 则∠BDE的度数为 .
参考答案:
解:∵AB=AC,
∴∠ABC=∠ACB,
∵∠A=30°,
∴∠ABC=∠ACB=(180°﹣30°)/2=75°,
∵以B为圆心,BC长为半径画弧,
∴BE=BD=BC,
∴∠BDC=∠ACB=75°,
∴∠CBD=180°﹣75°﹣75°=30°,
∴∠DBE=75°﹣30°=45°,
∴∠BED=∠BDE=(180°﹣45°)/2=67.5°.
故答案为:67.5°
考点分析:
等腰三角形的性质.
题干分析:
根据AB=AC,利用三角形内角和定理求出∠ABC的度数,再利用等腰三角形的性质和三角形内角和定理求出∠DBC=30°,然后即可求出∠BDE的度数.
解题反思:
本题考查了学生对等腰三角形的性质和三角形内角和定理等知识点的理解和掌握,此题的突破点是利用等腰三角形的性质和三角形内角和定理求出∠DBC=30°,然后即可求得答案.
在一个等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。两腰的夹角叫做顶角,腰和底边的夹角叫做底角。等腰三角形的两个底角度数相等(简写成“等边对等角”)。
在近几年的全国各地中考数学试卷当中,与等腰三角形有关的试题越来越灵活,特别是在一些综合性较强的压轴题中,等腰三角形都起到关键性的作用,甚至一些压轴题都是围绕等腰三角形来设计。
关于等腰三角形的的求解问题,常常以不同的方式呈现,不少学生由于忽略了分类讨论,造成无法准确解决问题,导致丢分。
赞 (0)