人类和癌症的战争简史(中)
上期简单介绍了癌症特点,这期主要讲人类与癌症的战争开始
The War Against Cancer
1. 常规战斗:无差别攻击
大多数人对癌症的印象就是:手术切除+放疗/化疗,然后等死。这显然是极大的误解,放化疗对人体细胞算是无差别攻击,虽是无奈之举,也没有那么不堪。
一窝端 -- 手术清除
最理想的状况,只限于早期癌症。这个时期的癌细胞们都集中在一个地方,没有扩散,而且长在能切的部位,切除确实是最好的办法。治愈率非常高,说十拿九稳也不夸张。
治疗癌症,早发现最重要。
局部战役
如果没法手术或者担心手术后有残留,并且癌细胞祸害的区域仍在局部,就可以考虑放疗。(化学药物治疗叫化疗,放射性治疗叫放疗)
传统放疗一般用伽马射线之类的,这玩意儿简直就是机枪扫射,不管好人坏人,鸡犬不留,而且放射线本身也是一种致癌物,会增加正常DNA出错的概率,副作用贼大。
为了减少副作用,最近几年科学家正在尝试用质子束进行放疗,就是所谓的“质子疗法”,也是放疗的一种。
虽然这技术前景尚不明朗,目前也没有表现出更出色的疗效,但,就是贵!
全面战争
如果癌细胞已经扩散到身体其他部位或者白血病这类非实体肿瘤,通常就得化疗。
用化学药治疗的逻辑是,先找到癌细胞和正常细胞的区别,再开发相应的化学药物。但癌细胞源自正常细胞,两者差别不大,早些年,科学家只知道癌细胞比正常细胞分裂速度更快。无奈,只能拿这个做文章。
早期的化疗药不管正常细胞和癌细胞,只是粗暴地抑制所有分裂速度快的细胞。这下就炸锅了,看看正常细胞的更新周期:肠细胞2-5天,皮肤细胞28天,白细胞2-3周,红细胞4个月,肝细胞5个月……只有神经细胞、心肌细胞等少数细胞是一辈子不更新的。
化疗药这么蛮干,虽然对抑制癌细胞很有效,但也对人体产生了系统性的负面影响!最显眼的就是,分裂旺盛的头发被长期抑制后,患者大多成了光头。
可即便是“两害相权取其轻”的妥协方案,依然耗费了无数人的心血。
认识这植物嘛?太平洋紫杉,红豆杉的一种,从紫衫树皮中提取的“紫杉醇”,号称抗癌第一药。科学家花了20年,测试了3万个样本,才找到这个迄今为止最优秀的天然抗癌药。
了解其抗癌原理要懂些高中生物知识,简单来说,紫杉醇会让微管蛋白聚成一团,抑制纺锤体形成,破坏有丝分裂,导致细胞分裂卡在DNA合成后期无法继续。
左边细胞顺利分裂成2个,右边微管蛋白被紫杉醇搅成一团,细胞分裂被冻结。
紫杉醇一经问世便疗效斐然,甚至对复发性卵巢癌的有效率都达到了30%!这在上世纪80年代是爆炸性事件,要不是环保组织拦着,紫衫差点被砍到绝种。到底是什么化学物质如此神奇?来,给你看一眼:
但是,现在很多人不问原理,只听说红豆杉能抗癌,就把它当成防癌补品来用。如果抗癌和防癌是一回事,那子弹就可以当防弹衣用了。当他们知道紫杉醇是抑制细胞分裂的化疗药,正常人吃了和吃毒药差不多的时候,不知他们会怎么想?
另外,从秋水仙提取的秋水仙碱,从长春花提取的长春花碱,从美登木提取的美登木素,都是通过抑制微管蛋白的聚合(紫杉醇是让微管蛋白过分聚合),破坏纺锤体成形,最终让细胞分裂停止。
虽然长春花、美登木很早就是一味药材了,在传统医学里使用颇多,但发现其抗癌成分的是美国人和加拿大人。从确定疗效到确定成分,再到提纯,再到人工合成,再到改进配方,所费心血不知凡几。
举个例子,法国科学家Potier在用10-DAB合成紫杉醇的过程中,发现一个中间产物叫RP5676,比紫杉醇更能结合微管蛋白,后来这个中间产物就成了新的抗癌药:多西他赛
手术、放疗、化疗是癌症治疗三大常规利器,三者往往结合使用,有些局部治疗也用化疗,有些全身治疗也用放疗。虽然是无差别攻击,但只要治疗得当,三大利器对付癌症还是很有效的。
不过癌症治疗是极其复杂的工作,不然IBM花了几百亿的Watson系统也不会铩羽而归。没人知道每个癌症的发展所以没法指望每个医生都能制定完美的治疗方案。
治疗得当是幸运,治疗失当也不稀奇。
心理战
信息时代的坏处是人人都知道放疗化疗的副作用,这种心理暗示在治疗过程中造成的伤害不容小觑。如果再遇到一个庸医,那治疗就和催命没啥区别了!原本免疫系统在和癌细胞的攻防战中还能勉强维持,放化疗一顿狂轰滥炸,杀敌八百自损一千。可人家癌细胞恢复力强啊,等它们缓过劲发动第二波攻势,就剩摧枯拉朽了。
听过很多医生感慨说:癌症死亡有三分之一是被吓死的,还有三分之一是治疗不当,最后三分之一才是真正无力回天。当然,感慨只是感慨,当不得真。
好心态和好医生同样重要!
大部分早期癌症完全可以通过手术治愈;情况稍微严重点,加上放化疗还是能轻松控制,甚至治愈;只有晚期癌症,才不得不听天由命。
2. 精准打击:靶向治疗
幸运的是,到了21世纪,癌症治疗开始不再是简单粗暴的无差别攻击,而是寻找癌细胞和正常细胞之间更多的不同点,这就是“靶向药”的概念。
让我们通过人类第一个靶向药的研发,来领略一下科技的风采吧!
1959年美国费城有2位研究员,意外发现慢粒白血病患者的22号染色体特别短小,这一发现冲击了“癌症由病毒引起”的主流观点,医学界立马沸腾了。22号染色体消失的部分去了哪里?13年后,芝加哥的科学家发现了慢粒白血病患者另一条异常染色体:9号染色体变长了。
到了这会,研究员猜到:两条染色体断裂后形成易位,22号染色体的长臂,跑到了9号染色体上。科学家很快证实了这一点,并称之为费城染色体。
俩染色体易位有什么后果?又过了13年,科学家发现,9号染色体断点的ABL基因编码是一种促进细胞分裂的激酶,这种激酶是保证正常细胞分裂所需的,活性会受到严格控制。但ABL基因和22号染色体断点的BCR基因结合之后,使得激酶像电脑程序卡死一样,始终处于高活性状态,导致细胞分裂失控,最终引起癌症。
科学家给这个发疯的激酶取了个名字,BCR-ABL蛋白。只要把BCR-ABL注入小白鼠体内,小白鼠就会有白血病症状。经过反复实验,最终证实,BCR-ABL正是造成慢性粒细胞白血病的原因。
医药公司这个时候才会介入,开始烧钱研发,可即便如此,也足足烧了15年,研究人员不断设计和修饰药物分子,最终开发出4-[(4-甲基-1-哌嗪)甲基]-N-[4-甲基-3-[[4-(3-吡啶)-2-嘧啶]氨基]苯基] -苯胺甲磺酸盐,光看名字就知道开发这玩意儿有复杂了!这种全新的化学成分学名甲磺酸伊马替尼,商品名:格列卫。它可以抑制BCR-ABL蛋白的活性点,对慢粒白血病有奇迹般的效果,而正常细胞没有这种蛋白,所以副作用非常有限。
有趣的是,这玩意儿不像紫杉醇是“纯天然提取的绿色产品”,而是人为设计并合成的新化学成分。但论副作用,却比纯天然的紫杉醇小得多。
所以说,纯天然和健康完全是两码事,本质还是要看里面的化学反应,别忘了,古代毒药基本都是纯天然的。
格列卫于2001年5月通过FDA批准,整个审批过程不到三个月,创造了FDA审批药物的最快记录,并评为当年的十大科技突破,是人类抗癌历史的里程碑。格列卫凭借一己之力,将原本是绝症的慢粒白血病变成了类似高血压这样的慢性病,五年生存率超过90%!只要定期吃药,日常生活和普通人没两样,寿命也有保障,是目前最成功的靶向药。
更为欣喜的是,格列卫虽然不能直接让错位的染色体恢复正常,但给了人体系统充足的备战时间,最终大约有30%-40%患者的费城染色体转为阴性。
另一个例子,中国人有重要贡献:急性早幼粒细胞白血病,17号染色体和15号染色体易位,17号染色体上的RARα基因与15号染色体的PML基因形成PML-RARα融合基因,导致早幼粒细胞分裂不受控制,引发白血病。
这曾是一种极为凶险的白血病,几个月便可夺人性命!但现在用全反式维甲酸和三氧化二砷(砒霜)进行联合靶向治疗,五年生存率已超过90%,达到基本“治愈”标准。这一治疗方案的灵感来源于一个民间中医的偏方,后来科学家从分子机理上揭示了诱导白血病细胞分化凋亡的过程,把疗效随缘的偏方升级成十拿九稳的抗癌药,中国前卫生部部长陈竺是这一成果的重要贡献者。
发现癌细胞机理-人为设计药物分子-解决癌症,这套路看着无比痛快,但想到研发投入就无比痛心了!堆成山的美金烧成了灰。
靶点
打蛇打七寸,慢粒白血病的BCR-ABL,急性早幼粒白血病的PML-RARα,就是癌细胞的七寸,医学上称之为“靶点”。只要找到了靶点,人类就很有希望制服癌症这条毒蛇。但并非每一个靶向药都有格列卫这般神奇,或者说,几乎没有什么靶向药能全面超越格列卫。一般靶向药能把晚期五年生存率提高到30%就算很优秀了,因为其他癌细胞并没有像BCR-ABL这么容易搞定的特征靶点。
那咋办?科学家很快搬出了新武器。
美国科学家从癌细胞分泌物里发现了血管内皮生长因子VEGF,这是一种可以促进血管形成的蛋白。要知道,癌细胞的高效分裂是以消耗大量营养为代价的,而营养靠血管运送,所以肿瘤为了保证营养,会疯狂促进周边血管的生长。于是,科学家提出了一种针对肿瘤血管,而不是针对癌细胞的治疗思路,靶点正是VEGF。
2004年美国FDA批准了第一个抗肿瘤血管生成药物,安维汀。它可以阻止VEGF与血管内皮细胞结合,抑制血管形成,大幅度削减了肿瘤的营养供应,从而抑制肿瘤生长和扩散转移,延长患者寿命。不过,癌细胞勒紧裤腰带,日子还是能过的,有啥办法能彻底“饿死”癌细胞?
2018年1月《自然》的一篇文章让我们看到了希望,科学家发现了一种可以控制细胞内脂肪合成和营养物质循环再生的蛋白:REV-ERB。如果REV-ERB维持在较低水平,细胞就会允许合成脂肪并且把一些废弃的营养物质循环再生,如果REV-ERB的水平升高,细胞就会停止那些工作。这是一个正常操作,和人体生物钟有关。
癌细胞因为要合成营养,就得把REV-ERB的活性降到很低。科学家尝试激活了这个蛋白,结果发现,大量癌细胞真的被饿死了!更惊喜的是,正常细胞的REV-ERB活跃度本身就很高,所以在治疗过程中基本不受影响。
简单来说,癌细胞每天要吃10碗饭,正常细胞每天只吃1碗饭,科学家想办法把米饭供应降到了1碗,于是,癌细胞饿死了。
可惜,针对REV-ERB靶点的研究尚未成熟,靶向药更是无从谈起。
你肯定很想知道,人类已经找到了多少靶点?又有多少已经开发出了靶向药?
截止2018年底,从FDA批准的靶向药来看,已经开发出靶向药的靶点有:肺癌12个,乳腺癌6个,结直肠癌12个,白血病15个,淋巴瘤9个,甲状腺癌15个,黑色素瘤5个,肾癌27个,肝癌9个,胃癌3个,多发性骨髓瘤4个,胰腺癌7个……大家可以自己上FDA官网和美国国家癌症研究院去数吧,若周边有人患了这类已经找到靶点的癌症,那也算不幸中的万幸了。
关于这数据有几个说明:
因为数据太多,可能会统计有误,但真实数据只多不少。
同一个靶点,不同医药公司会开发出不同药物,比如,已批准上市的针对EGFR靶点的药物至少有20个。
不同癌症可能是同一个靶点。比如,7号染色体短臂上的表皮生长因子受体EGFR基因,与细胞增殖和信号传导密切相关,这个基因很容易突变(可能是杀人最多的基因了),一旦变成活跃状态,就会导致细胞分裂不受控制,引发癌症。若发生在肺部,就是肺癌,若发生在胰腺,就是胰腺癌。所以癌症按照部位分类并不是很精准。
新的靶点仍不断被发现。举个例子,德克萨斯大学和上海交通大学的联合团队发现了急性骨髓性白血病的一个新靶点:LILRB4,该成果发表于2018年10月《自然》杂志,仅仅只是几个月前的事情。
看得出来,医学的核心技术并不是材料技术。虽然日本的整体医疗环境是最好的,但从技术创新讲,美帝仍然是一骑绝尘。中国虽然进步很快,但总体实力和美帝差距甚大。
癌细胞的反击
靶向药为特定癌细胞量身定做,这和破解密码差不多,开发成本极高,可一旦癌细胞更改了密码,那之前的工作就白费了。
事实上,总会有一些癌细胞能抗住靶向药的攻击,因为癌细胞可以躲到几乎任何地方,而药物却不可能在每个地方都达到足够杀死癌细胞的浓度,于是,癌细胞的耐药性就出现了。
癌细胞有两大依仗:更快的分裂速度、更高的突变概率,这本质上是加速了进化速度。如果继续用靶向药的思路去破解密码,代价会越来越大,到头来人类很可能就陷到了癌细胞的迷宫里。
以死亡数最高的肺癌为例,EGFR基因突变导致的非小细胞肺癌是最常见的一种肺癌。第一代靶向药很快问世了,2003年上市的易瑞沙,2004年上市的特罗凯,还有2011年上市的凯美纳。
其中,凯美纳是中国第一个小分子靶向药,当时被卫生部长陈竺誉为民生领域的“两弹一星”,是中国医药界一个不小的突破。
尽管是很了不起的事情,可患者在服用第一代肺癌药后,几乎全都出现了耐药性。短则几个月,长则几十个月,EGFR基因就出现了新的变异,密码一改,靶向药自然就没用了。
于是,2013年第二代肺癌药阿法替尼上市,这显然不是终点,2015年第三代肺癌药奥希替尼上市,但依然无法阻止EGFR基因的突变,现在第四代肺癌药也已经上路了,未来肯定还有第五代……
需要注意,第三代不见得比第一代先进,只是因为癌细胞不停更换密码,就需要用不同抗癌药去破解,至于到底该吃第几代,千万听医生的,不可自作主张。
按这路数走,很难追上癌细胞的步伐,咋办?