Seurat4.0系列教程6:常用命令

Seurat 标准流程

标准 Seurat 工作流采用原始的单细胞表达数据,旨在数据中查找clusters。此过程包括数据标准化和高变基因选择、数据归一化、高变基因的PCA、共享近邻图形的构建以及使用模块优化进行聚类。最后,我们使用 t-SNE 在二维空间中可视化我们的clusters。

pbmc.counts <- Read10X(data.dir = "~/Downloads/pbmc3k/filtered_gene_bc_matrices/hg19/")
pbmc <- CreateSeuratObject(counts = pbmc.counts)
pbmc <- NormalizeData(object = pbmc)
pbmc <- FindVariableFeatures(object = pbmc)
pbmc <- ScaleData(object = pbmc)
pbmc <- RunPCA(object = pbmc)
pbmc <- FindNeighbors(object = pbmc)
pbmc <- FindClusters(object = pbmc)
pbmc <- RunTSNE(object = pbmc)
DimPlot(object = pbmc, reduction = "tsne")

Seurat对象交互

自 Seurat v4.0 以来,对 Seurat 对象进行了改进,并增加了用户交互的新方法。还为常见任务引入简单的功能,例如取子集和合并。

# Get cell and feature names, and total numbers
colnames(x = pbmc)
Cells(object = pbmc)
rownames(x = pbmc)
ncol(x = pbmc)
nrow(x = pbmc)
# Get cell identity classes
Idents(object = pbmc)
levels(x = pbmc)

# Stash cell identity classes
pbmc[["old.ident"]] <- Idents(object = pbmc)
pbmc <- StashIdent(object = pbmc, save.name = "old.ident")

# Set identity classes
Idents(object = pbmc) <- "CD4 T cells"
Idents(object = pbmc, cells = 1:10) <- "CD4 T cells"

# Set identity classes to an existing column in meta data
Idents(object = pbmc, cells = 1:10) <- "orig.ident"
Idents(object = pbmc) <- "orig.ident"

# Rename identity classes
pbmc <- RenameIdents(object = pbmc, `CD4 T cells` = "T Helper cells")
# Subset Seurat object based on identity class, also see ?SubsetData
subset(x = pbmc, idents = "B cells")
subset(x = pbmc, idents = c("CD4 T cells", "CD8 T cells"), invert = TRUE)

# Subset on the expression level of a gene/feature
subset(x = pbmc, subset = MS4A1 > 3)

# Subset on a combination of criteria
subset(x = pbmc, subset = MS4A1 > 3 & PC1 > 5)
subset(x = pbmc, subset = MS4A1 > 3, idents = "B cells")

# Subset on a value in the object meta data
subset(x = pbmc, subset = orig.ident == "Replicate1")

# Downsample the number of cells per identity class
subset(x = pbmc, downsample = 100)
# Merge two Seurat objects
merge(x = pbmc1, y = pbmc2)
# Merge more than two Seurat objects
merge(x = pbmc1, y = list(pbmc2, pbmc3))

数据访问

在 Seurat 中访问数据很简单,使用明确定义的取子集代码可以快速查找所需的数据。

# View metadata data frame, stored in object@meta.data
pbmc[[]]

# Retrieve specific values from the metadata
pbmc$nCount_RNA
pbmc[[c("percent.mito", "nFeature_RNA")]]

# Add metadata, see ?AddMetaData
random_group_labels <- sample(x = c("g1", "g2"), size = ncol(x = pbmc), replace = TRUE)
pbmc$groups <- random_group_labels
# Retrieve or set data in an expression matrix ('counts', 'data', and 'scale.data')
GetAssayData(object = pbmc, slot = "counts")
pbmc <- SetAssayData(object = pbmc, slot = "scale.data", new.data = new.data)
# Get cell embeddings and feature loadings
Embeddings(object = pbmc, reduction = "pca")
Loadings(object = pbmc, reduction = "pca")
Loadings(object = pbmc, reduction = "pca", projected = TRUE)
# FetchData can pull anything from expression matrices, cell embeddings, or metadata
FetchData(object = pbmc, vars = c("PC_1", "percent.mito", "MS4A1"))

Seurat的可视化

默认情况下,所有绘图功能都将返回 ggplot2 绘图,从而允许使用 ggplot2 轻松定制。

# Dimensional reduction plot for PCA or tSNE
DimPlot(object = pbmc, reduction = "tsne")
DimPlot(object = pbmc, reduction = "pca")

# Dimensional reduction plot, with cells colored by a quantitative feature
FeaturePlot(object = pbmc, features = "MS4A1")

# Scatter plot across single cells, replaces GenePlot
FeatureScatter(object = pbmc, feature1 = "MS4A1", feature2 = "PC_1")
FeatureScatter(object = pbmc, feature1 = "MS4A1", feature2 = "CD3D")

# Scatter plot across individual features, repleaces CellPlot
CellScatter(object = pbmc, cell1 = "AGTCTACTAGGGTG", cell2 = "CACAGATGGTTTCT")

VariableFeaturePlot(object = pbmc)

# Violin and Ridge plots
VlnPlot(object = pbmc, features = c("LYZ", "CCL5", "IL32"))
RidgePlot(object = pbmc, feature = c("LYZ", "CCL5", "IL32"))

# Heatmaps
DoHeatmap(object = pbmc, features = heatmap_markers)
DimHeatmap(object = pbmc, reduction = "pca", cells = 200)

# New things to try!  Note that plotting functions now return ggplot2 objects, so you can add themes, titles, and options
# onto them
VlnPlot(object = pbmc, features = "MS4A1", split.by = "groups")
DotPlot(object = pbmc, features = c("LYZ", "CCL5", "IL32"), split.by = "groups")
FeaturePlot(object = pbmc, features = c("MS4A1", "CD79A"), blend = TRUE)
DimPlot(object = pbmc) + DarkTheme()
DimPlot(object = pbmc) + labs(title = "2,700 PBMCs clustered using Seurat and viewed\non a two-dimensional tSNE")

Seurat 提供了许多预制的主题,可添加到 ggplot2 中,以便快速定制

主题 功能
DarkTheme 设置带有白色文本的黑色背景
FontSize 为绘图的各个元素设置字体大小
NoAxes 删除轴和轴文本
NoLegend 删除所有图例元素
RestoreLegend 删除后恢复图例
RotatedAxis 旋转 x 轴标签

# Plotting helper functions work with ggplot2-based scatter plots, such as DimPlot, FeaturePlot, CellScatter, and
# FeatureScatter
plot <- DimPlot(object = pbmc) + NoLegend()

# HoverLocator replaces the former `do.hover` argument It can also show extra data throught the `information` argument,
# designed to work smoothly with FetchData
HoverLocator(plot = plot, information = FetchData(object = pbmc, vars = c("ident", "PC_1", "nFeature_RNA")))

# FeatureLocator replaces the former `do.identify`
select.cells <- FeatureLocator(plot = plot)

# Label points on a ggplot object
LabelPoints(plot = plot, points = TopCells(object = pbmc[["pca"]]), repel = TRUE)

不同assay之间切换

使用 Seurat,您可以轻松地在单细胞水平的不同assays 之间切换(例如来自 CITE-seq 的 ADT 计数,或整合/批次校正的数据)。大多数功能现在需要assays 参数,但可以设置默认assay以避免重复语句。

cbmc <- CreateSeuratObject(counts = cbmc.rna)
# Add ADT data
cbmc[["ADT"]] <- CreateAssayObject(counts = cbmc.adt)
# Run analyses by specifying the assay to use
NormalizeData(object = cbmc, assay = "RNA")
NormalizeData(object = cbmc, assay = "ADT", method = "CLR")

# Retrieve and set the default assay
DefaultAssay(object = cbmc)
DefaultAssay(object = cbmc) <- "ADT"
DefaultAssay(object = cbmc)

# Pull feature expression from both assays by using keys
FetchData(object = cbmc, vars = c("rna_CD3E", "adt_CD3"))

# Plot data from multiple assays using keys
FeatureScatter(object = cbmc, feature1 = "rna_CD3E", feature2 = "adt_CD3")

Seurat v2.X与v4.X命令的区别

Seurat v2.X Seurat v4.X
object@data GetAssayData(object = object)[1]
object@raw.data GetAssayData(object = object, slot = "counts")
object@scale.data GetAssayData(object = object, slot = "scale.data")
object@cell.names colnames(x = object)[2]
rownames(x = object@data)[3] rownames(x = object)[4]
object@var.genes VariableFeatures(object = object)[5]
object@hvg.info HVFInfo(object = object)[6]
object@assays$assay.name object[["assay.name"]]
object@dr$pca object[["pca"]]
GetCellEmbeddings(object = object, reduction.type = "pca") Embeddings(object = object, reduction = "pca")
GetGeneLoadings(object = object, reduction.type = "pca") Loadings(object = object, reduction = "pca")
AddMetaData(object = object, metadata = vector, col.name = "name") object$name <- vector
object@meta.data$name object$name
object@idents Idents(object = object)[7]
SetIdent(object = object, ident.use = "new.idents") Idents(object = object) <- "new.idents"
SetIdent(object = object, cells.use = 1:10, ident.use = "new.idents") Idents(object = object, cells = 1:10) <- "new.idents"
StashIdent(object = object, save.name = "saved.idents") object$saved.idents <- Idents(object = object)
levels(x = object@idents)[8] levels(x = object)[9]
RenameIdent(object = object, old.ident.name = "old.ident", new.ident.name = "new.ident") RenameIdents(object = object, "old.ident" = "new.ident")
WhichCells(object = object, ident = "ident.keep") WhichCells(object = object, idents = "ident.keep")
WhichCells(object = object, ident.remove = "ident.remove") WhichCells(object = object, idents = "ident.remove", invert = TRUE)
WhichCells(object = object, max.cells.per.ident = 500)[10] WhichCells(object = object, downsample = 500)[11]
WhichCells(object = object, subset.name = "name", low.threshold = low, high.threshold = high) WhichCells(object = object, expression = name > low & name < high)[12]
FilterCells(object = object, subset.names = "name", low.threshold = low, high.threshold = high) subset(x = object, subset = name > low & name < high)[13]
SubsetData(object = object, subset.name = "name", low.threshold = low, high.threshold = high) subset(x = object, subset = name > low & name < high)[14]
MergeSeurat(object1 = object1, object2 = object2) merge(x = object1, y = object2)[15]

文中链接

[1]

GetAssayData(object = object): https://satijalab.org/seurat/reference/AssayData.html

[2]

colnames(x = object): https://rdrr.io/r/base/colnames.html

[3]

rownames(x = object@data): https://rdrr.io/r/base/colnames.html

[4]

rownames(x = object): https://rdrr.io/r/base/colnames.html

[5]

VariableFeatures(object = object): https://satijalab.org/seurat/reference/VariableFeatures.html

[6]

HVFInfo(object = object): https://satijalab.org/seurat/reference/VariableFeatures.html

[7]

Idents(object = object): https://satijalab.org/seurat/reference/Idents.html

[8]

levels(x = object@idents): https://rdrr.io/r/base/levels.html

[9]

levels(x = object): https://rdrr.io/r/base/levels.html

[10]

WhichCells(object = object, max.cells.per.ident = 500): https://satijalab.org/seurat/reference/WhichCells.html

[11]

WhichCells(object = object, downsample = 500): https://satijalab.org/seurat/reference/WhichCells.html

[12]

WhichCells(object = object, expression = name > low & name < high): https://satijalab.org/seurat/reference/WhichCells.html

[13]

subset(x = object, subset = name > low & name < high): https://rdrr.io/r/base/subset.html

[14]

subset(x = object, subset = name > low & name < high): https://rdrr.io/r/base/subset.html

[15]

merge(x = object1, y = object2): https://rdrr.io/r/base/merge.html

(0)

相关推荐

  • 单细胞工具箱|Seurat官网标准流程

    学习单细胞转录组肯定先来一遍Seurat官网的标准流程. 数据来源于Peripheral Blood Mononuclear Cells (PBMC),共2700个单细胞, Illumina Next ...

  • Seurat学习与使用(一)

    简介Seurat是一个r包,被设计用于单细胞rna-seq数据的细胞质控和分析.Seurat旨在使用户能够识别和解释单细胞转录组数据中的异质性来源,同时提供整合不同类型的单细胞数据的函数.目前Seur ...

  • Seurat4.0系列教程1:标准流程

    时代的洪流奔涌而至,单细胞技术也从旧时王谢堂前燕,飞入寻常百姓家.雪崩的时候,没有一片雪花是无辜的,你我也从素不相识,到被一起卷入单细胞天地.R语言和Seurat已以势如破竹之势进入4.0时代,天问一 ...

  • Seurat4.0系列教程3:合并数据集

    在此,我们将合并两个 10X PBMC 数据集:一个包含 4K 细胞,一个包含 8K 细胞.数据集可以在这里[1]找到. 首先,我们在数据中读入并创建两个Seurat对象. library(Seura ...

  • Seurat4.0系列教程4:整合分析

    scRNA-seq整合简介 对两个或两个以上单细胞数据集的整合分析提出了独特的挑战.特别是,在标准工作流下,识别存在于多个数据集中的基因可能存在问题.Seurat v4 包括一组方法,以匹配(或&qu ...

  • Seurat4.0系列教程5:交互技巧

    此文演示了一些与 Seurat 对象交互的功能.为了演示,我们将使用在第一个教程中创建的 2,700 个 PBMC 对象.为了模拟我们有两个复制的情景,我们将随机分配每个集群中一半的细胞自" ...

  • Seurat4.0系列教程7:数据可视化方法

    我们将使用之前从 2,700个 PBMC 教程中计算的 Seurat 对象在 演示可视化技术.您可以从这里[1]下载此数据集 SeuratData::InstallData("pbmc3k& ...

  • Seurat4.0系列教程8:细胞周期评分和回归分析

    此教程展示了如何通过基于传统细胞周期相关marker计算细胞周期得分,并在预处理过程中将这些分数从数据中回归,以消除 scRNA-seq 数据中细胞周期异质性的影响.我们在小鼠造血祖细胞数据集上证明了 ...

  • Seurat4.0系列教程9:差异表达检测

    我们使用通过SeuratData[1]包提供的 2,700个 PBMC 来演示. 加载数据 library(Seurat) library(SeuratData) pbmc <- LoadDat ...

  • Seurat4.0系列教程10:降维

    加载数据 此教程演示了如何存储和与Seurat 中的降维信息进行交互.为了演示,我们将使用SeuratData[1]包提供的 2,700 个 PBMC 对象. library(Seurat) libr ...

  • Seurat4.0系列教程11:使用sctransform

    单细胞RNA-seq数据中的生物异质性经常受技术因素(包括测序深度)影响.每个细胞中检测到的分子数量在细胞之间可能显著变化,即使在相同的细胞类型内也是如此.对 scRNA-seq 数据的解释需要有效的 ...