手把手教你使用 1D 卷积和 LSTM 混合模型做 EEG 信号识别

更多技术干货第一时间送达

本文是由CSDN用户[Memory逆光]授权分享。主要介绍了使用 1D 卷积和 LSTM 混合模型做 EEG 信号识别。感谢Memory逆光!
内容包括:1. 数据集(1.1 数据集下载、1.2 数据集解释);2. 读取数据;3. 搭建模型;4. 训练模型;5. 展示结果;6. 完整代码。
1. 数据集
1.1 数据集下载:
https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition
打开看一下
1.2 数据集解释:
表头为 X* 的是电信号数据,共有 11500 行,每行有 178 个数据,表示 1s 时间内截取的 178 个电信号;表头为 Y 的一列是该时间段数据的标签,包括 5 个分类:
5-记录大脑的EEG信号时病人睁开了眼睛;
4-记录大脑的EEG信号时患者闭上了眼睛;
3-健康大脑区域的脑电图活动;
2-肿瘤所在区域的脑电图活动;
1-癫痫发作活动;
2. 读取数据
import pandas as pd

data = "data.csv"

df = pd.read_csv(data, header=0, index_col=0)
df1 = df.drop(["y"], axis=1)
lbls = df["y"].values - 1

这里使用 pandas 库读取 data.csv,df1 保存电位数据,lbls 保存标签;
import numpy as np

wave = np.zeros((11500, 178))

z = 0
for index, row in df1.iterrows():
    wave[z, :] = row
    z+=1

mean = wave.mean(axis=0)
wave -= mean
std = wave.std(axis=0)
wave /= std

def one_hot(y):
    lbl = np.zeros(5)
    lbl[y] = 1
    return lbl

target = []
for value in lbls:
    target.append(one_hot(value))
target = np.array(target)
wave = np.expand_dims(wave, axis=-1)

我们将数据保存在数组 wave 和 target 中,将点位数据标准化(减去均值后除以方差),并将标签转换成 one hot 的形式;
3. 搭建模型
我们使用 keras 搭建一个模型,包括 1D 卷积层和几个堆叠的 LSTM 层:
from keras.models import Sequential
from keras import layers

model = Sequential()
model.add(layers.Conv1D(64, 15, strides=2,input_shape=(178, 1), use_bias=False))
model.add(layers.ReLU())
model.add(layers.Conv1D(64, 3))
model.add(layers.Conv1D(64, 3, strides=2))
model.add(layers.ReLU())
model.add(layers.Conv1D(64, 3))
model.add(layers.Conv1D(64, 3, strides=2))  # [None, 54, 64]
model.add(layers.BatchNormalization())
model.add(layers.LSTM(64, dropout=0.5, return_sequences=True))
model.add(layers.LSTM(64, dropout=0.5, return_sequences=True))
model.add(layers.LSTM(32))
model.add(layers.Dense(5, activation="softmax"))
model.summary()

网络结构如图:
即该模型使用 1D 卷积进行特征提取,使用 LSTM 进行时域建模,最后通过一个全连接层预测类别;
4. 训练模型
我们使用 Adam 优化器,并设置学习率衰减来进行训练:
import matplotlib.pyplot as plt
import pandas as pd
from keras.models import Sequential
from keras import layers
from keras import regularizers
import os
import keras

import keras.backend as K

save_path = './keras_model.h5'

if os.path.isfile(save_path):
    model.load_weights(save_path)
    print('reloaded.')

adam = keras.optimizers.adam()

model.compile(optimizer=adam,
              loss="categorical_crossentropy", metrics=["acc"])
# 计算学习率
def lr_scheduler(epoch):
    # 每隔100个epoch,学习率减小为原来的0.5
    if epoch % 100 == 0 and epoch != 0:
        lr = K.get_value(model.optimizer.lr)
        K.set_value(model.optimizer.lr, lr * 0.5)
        print("lr changed to {}".format(lr * 0.5))
    return K.get_value(model.optimizer.lr)

lrate = LearningRateScheduler(lr_scheduler)

history = model.fit(wave, target, epochs=400,
                    batch_size=128, validation_split=0.2,
                    verbose=1, callbacks=[lrate])

model.save_weights(save_path)

这样就可以开始训练啦:
训练的模型参数保存在 sace_path 中;
5. 展示结果
print(history.history.keys())
# summarize history for accuracy
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
这时我们可以查看训练结果(因为时间有限,我只训练了 100 个 epoch:
6. 完整代码

import matplotlib.pyplot as plt
import pandas as pd
from keras.models import Sequential
from keras import layers
from keras import regularizers
import os
import keras

import keras.backend as K

import numpy as np

from keras.callbacks import LearningRateScheduler

data = "data.csv"

df = pd.read_csv(data, header=0, index_col=0)
df1 = df.drop(["y"], axis=1)
lbls = df["y"].values - 1

wave = np.zeros((11500, 178))

z = 0
for index, row in df1.iterrows():
    wave[z, :] = row
    z+=1

mean = wave.mean(axis=0)
wave -= mean
std = wave.std(axis=0)
wave /= std

def one_hot(y):
    lbl = np.zeros(5)
    lbl[y] = 1
    return lbl

target = []
for value in lbls:
    target.append(one_hot(value))
target = np.array(target)
wave = np.expand_dims(wave, axis=-1)

model = Sequential()
model.add(layers.Conv1D(64, 15, strides=2,
                        input_shape=(178, 1), use_bias=False))
model.add(layers.ReLU())
model.add(layers.Conv1D(64, 3))
model.add(layers.Conv1D(64, 3, strides=2))
model.add(layers.BatchNormalization())
model.add(layers.Dropout(0.5))
model.add(layers.Conv1D(64, 3))
model.add(layers.Conv1D(64, 3, strides=2))
model.add(layers.BatchNormalization())
model.add(layers.LSTM(64, dropout=0.5, return_sequences=True))
model.add(layers.LSTM(64, dropout=0.5, return_sequences=True))
model.add(layers.LSTM(32))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(5, activation="softmax"))
model.summary()

save_path = './keras_model3.h5'

if os.path.isfile(save_path):
    model.load_weights(save_path)
    print('reloaded.')

adam = keras.optimizers.adam()

model.compile(optimizer=adam,
              loss="categorical_crossentropy", metrics=["acc"])
# 计算学习率
def lr_scheduler(epoch):
    # 每隔100个epoch,学习率减小为原来的0.5
    if epoch % 100 == 0 and epoch != 0:
        lr = K.get_value(model.optimizer.lr)
        K.set_value(model.optimizer.lr, lr * 0.5)
        print("lr changed to {}".format(lr * 0.5))
    return K.get_value(model.optimizer.lr)

lrate = LearningRateScheduler(lr_scheduler)

history = model.fit(wave, target, epochs=400,
                    batch_size=128, validation_split=0.2,
                    verbose=2, callbacks=[lrate])

model.save_weights(save_path)

print(history.history.keys())
# summarize history for accuracy
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()

作者博客:
https://blog.csdn.net/weixin_44936889/article/details/105202661

(0)

相关推荐